扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
作为轻量级java框架,sharding JDBC在Java的jdbc层提供了额外的服务,可以理解为增强版的jdbc驱动。其中,分库分表的操作是其中的重要一环,接下来就跟随我来看一看,这一操作如何进行。
环境准备
pom.xml
为苏州等地区用户提供了全套网页设计制作服务,及苏州网站建设行业解决方案。主营业务为成都网站设计、成都网站建设、外贸网站建设、苏州网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!
io.shardingsphere
sharding-jdbc-spring-boot-starter
${sharding.version}
com.alibaba
druid
1.1.10
org.mybatis
mybatis
3.4.5
org.mybatis.spring.boot
mybatis-spring-boot-starter
1.3.1
MySQL
mysql-connector-java
5.1.46
org.springframework.boot
spring-boot-starter
org.projectlombok
lombok
org.springframework.boot
spring-boot-starter-test
test
domain
// 建立domain@Setter@Getter@ToString@NoArgsConstructor@AllArgsConstructorpublic class Employee {
private Long id;
private String name;}
配置类
@SpringBootApplication@MapperScan("cn.wolfcode.sharding.mapper")public class ShardingApplication { }
分库分表
案例模型
把数据分别存放在两台服务器的两个数据库中表,通过分片算法来决定当前的数据存放在哪个数据库的哪个表中,由于一个连接池只能连接一个特定的数据库,所以这里需要创建多个连接池对象
建表
-- 分别在2台服务器中建立数据库sharding,并且建表employee_0和employee_1CREATE TABLE employee_0
(id
bigint(20) PRIMARY KEY AUTO_INCREMENT,name
varchar(255) DEFAULT NULL) ENGINE=InnoDB DEFAULT CHARSET=utf8;-- ###################################CREATE TABLE employee_1
(id
bigint(20) PRIMARY KEY AUTO_INCREMENT,name
varchar(255) DEFAULT NULL) ENGINE=InnoDB DEFAULT CHARSET=utf8;
application.properties
sharding.jdbc.datasource.names=db0,db1
sharding.jdbc.datasource.db0.type=com.alibaba.druid.pool.DruidDataSource
sharding.jdbc.datasource.db0.driver-class-name=com.mysql.jdbc.Driver
sharding.jdbc.datasource.db0.url=jdbc:mysql://db0Ip:port/sharing
sharding.jdbc.datasource.db0.username=xxx
sharding.jdbc.datasource.db0.password=xxx
sharding.jdbc.datasource.db1.type=com.alibaba.druid.pool.DruidDataSource
sharding.jdbc.datasource.db1.driver-class-name=com.mysql.jdbc.Driver
sharding.jdbc.datasource.db1.url=jdbc:mysql://db1Ip:port/sharing
sharding.jdbc.datasource.db1.username=xxx
sharding.jdbc.datasource.db1.password=xxx
sharding.jdbc.config.sharding.default-database-strategy.inline.sharding-column=id
sharding.jdbc.config.sharding.default-database-strategy.inline.algorithm-expression=db$->{id % 2}
sharding.jdbc.config.sharding.binding-tables=employee
sharding.jdbc.config.sharding.tables.employee.actual-data-nodes=db$->{0..1}.employee$->{0..1}
sharding.jdbc.config.sharding.tables.employee.table-strategy.inline.sharding-column=id
sharding.jdbc.config.sharding.tables.employee.table-strategy.inline.algorithm-expression=employee$->{id % 2}
sharding.jdbc.config.sharding.tables.employee.key-generator-column-name=id
sharding.jdbc.config.props.sql.show=true
mapper
/**
底层会根据分片规则,把我们写的逻辑表改写为数据库中的真实表
/@Mapperpublic interface EmployeeMapper {
@Select("select from employee")
List
@Insert("insert into employee (name) values (#{name})")
void inser(Employee entity);}
测试
@RunWith(SpringRunner.class)@SpringBootTest(classes=ShardingApplication.class)public class ShardingApplicationTests {
@Autowired
private EmployeeMapper employeeMapper;
@Test
public void save() {
for (int i = 0; i < 10; i++) {
Employee employee = new Employee();
employee.setName("xx"+i);
employeeMapper.inser(employee);
}
}
@Test
public void list() {
employeeMapper.selectAll().forEach(System.out::println);
}}
优缺点
拆分后单表数据量比较小,单表大数据被拆分,解决了单表大数据访问问题
分表以什么切分如果弄的不好,导致多次查询,而且有时候要跨库操作,甚至导致join无法使用,对排序分组等有性能影响
之前的原子操作被拆分成多个操作,事务处理变得复杂
多个DB维护成本增加
分库分表也仅仅是shardingJDBC中小小的一部分,还有很多内容需要大家继续研究,如果你对此感兴趣的话,不妨关注我,接下来我还会发布更多的相关教程供大家学习,如果遇到问题我也会尽力帮助你。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流