扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章将为大家详细讲解有关Python怎么实现K折交叉验证法的方法,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
创新互联-专业网站定制、快速模板网站建设、高性价比铅山网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式铅山网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖铅山地区。费用合理售后完善,十多年实体公司更值得信赖。学习器在测试集上的误差我们通常称作“泛化误差”。要想得到“泛化误差”首先得将数据集划分为训练集和测试集。那么怎么划分呢?常用的方法有两种,k折交叉验证法和自助法。下面是k折交叉验证法的python实现。
##一个简单的2折交叉验证 from sklearn.model_selection import KFold import numpy as np X=np.array([[1,2],[3,4],[1,3],[3,5]]) Y=np.array([1,2,3,4]) KF=KFold(n_splits=2) #建立4折交叉验证方法 查一下KFold函数的参数 for train_index,test_index in KF.split(X): print("TRAIN:",train_index,"TEST:",test_index) X_train,X_test=X[train_index],X[test_index] Y_train,Y_test=Y[train_index],Y[test_index] print(X_train,X_test) print(Y_train,Y_test) #小结:KFold这个包 划分k折交叉验证的时候,是以TEST集的顺序为主的,举例来说,如果划分4折交叉验证,那么TEST选取的顺序为[0].[1],[2],[3]。 #提升 import numpy as np from sklearn.model_selection import KFold #Sample=np.random.rand(50,15) #建立一个50行12列的随机数组 Sam=np.array(np.random.randn(1000)) #1000个随机数 New_sam=KFold(n_splits=5) for train_index,test_index in New_sam.split(Sam): #对Sam数据建立5折交叉验证的划分 #for test_index,train_index in New_sam.split(Sam): #默认第一个参数是训练集,第二个参数是测试集 #print(train_index,test_index) Sam_train,Sam_test=Sam[train_index],Sam[test_index] print('训练集数量:',Sam_train.shape,'测试集数量:',Sam_test.shape) #结果表明每次划分的数量 #Stratified k-fold 按照百分比划分数据 from sklearn.model_selection import StratifiedKFold import numpy as np m=np.array([[1,2],[3,5],[2,4],[5,7],[3,4],[2,7]]) n=np.array([0,0,0,1,1,1]) skf=StratifiedKFold(n_splits=3) for train_index,test_index in skf.split(m,n): print("train",train_index,"test",test_index) x_train,x_test=m[train_index],m[test_index] #Stratified k-fold 按照百分比划分数据 from sklearn.model_selection import StratifiedKFold import numpy as np y1=np.array(range(10)) y2=np.array(range(20,30)) y3=np.array(np.random.randn(10)) m=np.append(y1,y2) #生成1000个随机数 m1=np.append(m,y3) n=[i//10 for i in range(30)] #生成25个重复数据 skf=StratifiedKFold(n_splits=5) for train_index,test_index in skf.split(m1,n): print("train",train_index,"test",test_index) x_train,x_test=m1[train_index],m1[test_index]
Python中貌似没有自助法(Bootstrap)现成的包,可能是因为自助法原理不难,所以自主实现难度不大。
关于“Python怎么实现K折交叉验证法的方法”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流