扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
怎么在python中使用LBPH实现人脸识别?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:国际域名空间、网站空间、营销软件、网站建设、金湾网站维护、网站推广。
python的数据类型:1. 数字类型,包括int(整型)、long(长整型)和float(浮点型)。2.字符串,分别是str类型和unicode类型。3.布尔型,Python布尔类型也是用于逻辑运算,有两个值:True(真)和False(假)。4.列表,列表是Python中使用最频繁的数据类型,集合中可以放任何数据类型。5. 元组,元组用”()”标识,内部元素用逗号隔开。6. 字典,字典是一种键值对的集合。7. 集合,集合是一个无序的、不重复的数据组合。
基于LBPH的人脸识别操作原理
1、LBPH(Local Binary Pattern Histogram)将检测到的人脸分为小单元,并将其与模型中的对应单元进行比较,对每个区域的匹配值产生一个直方图。
由于这种方法的灵活性,LBPH 是唯一允许模型样本人脸和检测到的人脸在形状、大小上可以不同的人脸识别算法。
2、调整后的区域中调用 predict()函数
predict()函数返回两个元素的数组:第一个元素是所识别 个体的标签,第二个是置信度评分。
3、所有的算法都有一个置信度评分阈值,置信度评分用来衡量所识别人脸与原模型的差距,0 表示完全匹配。可能有时不想保留所有的识别结果,则需要进一步处理,因此可用自己的算法来估算识别的置信度评分。
4、LBPH一个好的识别参考值要低于 50 ,任何高于 80 的参考值都会被认为是低的置信度评分。
基于LBPH的人脸识别操作实例
import cv2 # 加载训练数据集文件 # 获取人脸识别对象 recognizer = cv2.face.LBPHFaceRecognizer_create() # 读取训练数据 recognizer.read('trainer/trainer.yml') # 准备识别图片 img = cv2.imread('6.pgm') # 将图片灰度 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 加载特征数据 face_detector = cv2.CascadeClassifier('D:/Python/opencv/sources/data/haarcascades /haarcascade_frontalface_default.xml') # 参数: scaleFactor(比例因子):图片缩放多少,minNeighbors:至少检测多少次, minSize maxSize:当前检测区域的最大最小面积 faces = face_detector.detectMultiScale(gray) # scaleFactor=1.01, minNeighbors=3, maxSize=(33, 33), minSize=(28, 28) # 获取脸部特征值 for x, y, w, h in faces: cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), thickness=2) cv2.circle(img, (x+w//2, y+h//2), radius=w//2, thickness=2, color=(0, 0, 255)) # 人脸识别 id, confidence = recognizer.predict(gray[y:y+h, x:x+w]) print('标签id:', id, '置信评分:', confidence) # 显示图片 cv2.imshow('result', img) cv2.waitKey(0) # 一直显示 cv2.destroyAllWindows() # 释放资源
关于怎么在python中使用LBPH实现人脸识别问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流