扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章主要讲解了“redis字典知识点有哪些”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Redis字典知识点有哪些”吧!
目前创新互联已为上千多家的企业提供了网站建设、域名、雅安服务器托管、网站托管、企业网站设计、藁城网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
说起字典,也许大家比较陌生,但是我们都知道 Redis 本身提供 KV 查询的方式,这个 KV 就是其实通过底层就是通过字典保存。
另外,Redis 支持多种数据类型,其中一种类型为 Hash 键,也可以用来存储 KV 数据。
阿粉刚开始了解的这个数据结构的时候,本来以为这个就是使用字典实现。其实并不是这样的,初始创建 Hash 键,默认使用另外一种数据结构-「ZIPLIST」(压缩列表),以此节省内存空间。
不过一旦以下任何条件被满足,Hash 键的数据结构将会变为字典,加快查询速度。
server.hash_max_ziplist_value
(默认值为 64
)。server.hash_max_ziplist_entries
(默认值为 512
)。Redis 字典新建时默认将会创建一个哈希表数组,保存两个哈希表。
其中 ht[0]
哈希表在第一次往字典中添加键值时分配内存空间,而另一个 ht[1]
将会在下文中扩容/缩容才会进行空间分配。
字典中哈希表其实就等同于Java HashMap,我们知道 Java 采用数组加链表/红黑树的实现方式,其实哈希表也是使用类似的数据结构。
哈希表结构如下所示:
其中 table
属性是个数组, 其中数组元素保存一种 dictEntry
的结构,这个结构完全类似与 HashMap 中的 Entry
类型,这个结构存储一个 KV 键值对。
同时,为了解决 hash 碰撞的问题,dictEntry
存在一个 next 指针,指向下一个dictEntry
,这样就形成 dictEntry
的链表。
现在,我们回头对比 Java 中 HashMap,可以发现两者数据结构基本一致。
只不过 HashMap 为了解决链表过长问题导致查询变慢,JDK1.8 时在链表元素过多时采用红黑树的数据结构。
下面我们开始添加新元素,了解这其中的原理。
当我们往一个新字典中添加元素,默认将会为字典中 ht[0]
哈希表分配空间,默认情况下哈希表 table 数组大小为 4(「DICT_HT_INITIAL_SIZE」)。
新添加元素的键值将会经过哈希算法,确定哈希表数组的位置,然后添加到相应的位置,如图所示:
继续增加元素,此时如果两个不同键经过哈希算法产生相同的哈希值,这样就发生了哈希碰撞。
假设现在我们哈希表中拥有是三个元素,:
我们再增加一个新元素,如果此时刚好在数组 3 号位置上发生碰撞,此时 Redis 将会采用链表的方式解决哈希碰撞。
「注意,新元素将会放在链表头结点,这么做目的是因为新增加的元素,很大概率上会被再次访问,放在头结点增加访问速度。」
这里我们在对比一下元素添加过程,可以发现 Redis 流程其实与 JDK 1.7 版本的 HashMap 类似。
当我们元素增加越来越多时,哈希碰撞情况将会越来越频繁,这就会导致链表长度过长,极端情况下 O(1) 查询效率退化成 O(N) 的查询效率。
为此,字典必须进行扩容,这样就会使触发字典 rehash 操作。
当 Redis 进行 Rehash 扩容操作,首先将会为字典没有用到 ht[1]
哈希表分配更大空间。
❝画外音:
❞ht[1]
哈希表大小为第一个大于等于ht[0].used*2
的 2^2(2的n 次方幂)
然后再将 ht[0]
中所有键值对都迁移到 ht[1]
中。
当节点全部迁移完毕,将会释放 ht[0]
占用空间,并将 ht[1]
设置为 ht[0]
。
扩容 操作需要将 ht[0]
所有键值对都 Rehash
到 ht[1]
中,如果键值过多,假设存在十亿个键值对,这样一次性的迁移,势必导致服务器会在一段时间内停止服务。
另外如果每次 rehash
都会阻塞当前操作,这样对于客户端处理非常不友好。
为了避免 rehash
对服务器的影响,Redis 采用渐进式的迁移方式,慢慢将数据迁移分散到多个操作步骤。
这个操作依赖字典中一个属性 rehashidx
,这是一个索引位置计数器,记录下一个哈希表 table 数组上元素,默认情况为值为 「-1」。
假设此时扩容前字典如图所示:
当开始 rehash 操作,rehashidx
将会被设置为 「0」。
这个期间每次收到增加,删除,查找,更新命令,除了这些命令将会被执行以外,还会顺带将 ht[0]
哈希表在 rehashidx
位置的元素 rehash 到 ht[1]
中。
假设此时收到一个 「K3」键的查询操作,Redis 首先执行查询操作,接着 Redis 将会为 ht[0]
哈希表上table
数组第 rehashidx
索引上所有节点都迁移到 ht[1]
中。
当操作完成之后,再将 rehashidx
属性值加 1。
最后当所有键值对都 rehash
到 ht[1]
中时,rehashidx
将会被重新设置为 -1。
虽然渐进式的 rehash 操作减少了工作量,但是却带来键值操作的复杂度。
这是因为在渐进式 rehash
操作期间,Redis 无法明确知道键到底在 ht[0]
中,还是在 ht[1]
中,所以这个时候 Redis 不得不查找两个哈希表。
以查找为例,Redis 首先查询 ht[0]
,如果没找到将会继续查找 ht[1]
,除了查询以外,更新,删除也会执行如上的操作。
添加操作其实就没这么麻烦,因为ht[0]
不会在使用,那就统一都添加到 ht[1]
中就好了。
最后我们再对比一下 Java HashMap 扩容操作,它是一个一次性操作,每次扩容需要将所有键值对都迁移到新的数组中,所以如果数据量很大,消耗时间就会久。
感谢各位的阅读,以上就是“Redis字典知识点有哪些”的内容了,经过本文的学习后,相信大家对Redis字典知识点有哪些这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流