扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章主要介绍怎么使用Python求解带约束的最优化问题,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
为公主岭等地区用户提供了全套网页设计制作服务,及公主岭网站建设行业解决方案。主营业务为网站设计制作、成都网站建设、公主岭网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!python的五大特点是什么python的五大特点:1.简单易学,开发程序时,专注的是解决问题,而不是搞明白语言本身。2.面向对象,与其他主要的语言如C++和Java相比, Python以一种非常强大又简单的方式实现面向对象编程。3.可移植性,Python程序无需修改就可以在各种平台上运行。4.解释性,Python语言写的程序不需要编译成二进制代码,可以直接从源代码运行程序。5.开源,Python是 FLOSS(自由/开放源码软件)之一。
题目:
1. 利用拉格朗日乘子法
#导入sympy包,用于求导,方程组求解等等 from sympy import * #设置变量 x1 = symbols("x1") x2 = symbols("x2") alpha = symbols("alpha") beta = symbols("beta") #构造拉格朗日等式 L = 10 - x1*x1 - x2*x2 + alpha * (x1*x1 - x2) + beta * (x1 + x2) #求导,构造KKT条件 difyL_x1 = diff(L, x1) #对变量x1求导 difyL_x2 = diff(L, x2) #对变量x2求导 difyL_beta = diff(L, beta) #对乘子beta求导 dualCpt = alpha * (x1 * x1 - x2) #对偶互补条件 #求解KKT等式 aa = solve([difyL_x1, difyL_x2, difyL_beta, dualCpt], [x1, x2, alpha, beta]) #打印结果,还需验证alpha>=0和不等式约束<=0 for i in aa: if i[2] >= 0: if (i[0]**2 - i[1]) <= 0: print(i)
结果:
(-1, 1, 4, 6) (0, 0, 0, 0)
2. scipy包里面的minimize函数求解
from scipy.optimize import minimize import numpy as np from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt #目标函数: def func(args): fun = lambda x: 10 - x[0]**2 - x[1]**2 return fun #约束条件,包括等式约束和不等式约束 def con(args): cons = ({'type': 'ineq', 'fun': lambda x: x[1]-x[0]**2}, {'type': 'eq', 'fun': lambda x: x[0]+x[1]}) return cons #画三维模式图 def draw3D(): fig = plt.figure() ax = Axes3D(fig) x_arange = np.arange(-5.0, 5.0) y_arange = np.arange(-5.0, 5.0) X, Y = np.meshgrid(x_arange, y_arange) Z1 = 10 - X**2 - Y**2 Z2 = Y - X**2 Z3 = X + Y plt.xlabel('x') plt.ylabel('y') ax.plot_surface(X, Y, Z1, rstride=1, cstride=1, cmap='rainbow') ax.plot_surface(X, Y, Z2, rstride=1, cstride=1, cmap='rainbow') ax.plot_surface(X, Y, Z3, rstride=1, cstride=1, cmap='rainbow') plt.show() #画等高线图 def drawContour(): x_arange = np.linspace(-3.0, 4.0, 256) y_arange = np.linspace(-3.0, 4.0, 256) X, Y = np.meshgrid(x_arange, y_arange) Z1 = 10 - X**2 - Y**2 Z2 = Y - X**2 Z3 = X + Y plt.xlabel('x') plt.ylabel('y') plt.contourf(X, Y, Z1, 8, alpha=0.75, cmap='rainbow') plt.contourf(X, Y, Z2, 8, alpha=0.75, cmap='rainbow') plt.contourf(X, Y, Z3, 8, alpha=0.75, cmap='rainbow') C1 = plt.contour(X, Y, Z1, 8, colors='black') C2 = plt.contour(X, Y, Z2, 8, colors='blue') C3 = plt.contour(X, Y, Z3, 8, colors='red') plt.clabel(C1, inline=1, fontsize=10) plt.clabel(C2, inline=1, fontsize=10) plt.clabel(C3, inline=1, fontsize=10) plt.show() if __name__ == "__main__": args = () args1 = () cons = con(args1) x0 = np.array((1.0, 2.0)) #设置初始值,初始值的设置很重要,很容易收敛到另外的极值点中,建议多试几个值 #求解# res = minimize(func(args), x0, method='SLSQP', constraints=cons) ##### print(res.fun) print(res.success) print(res.x) # draw3D() drawContour()
结果:
7.99999990708696 True [-1.00000002 1.00000002]
以上是“怎么使用Python求解带约束的最优化问题”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流