Python的concat与merge函数怎么使用-成都快上网建站

Python的concat与merge函数怎么使用

这篇“Python的concat与merge函数怎么使用”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python的concat与merge函数怎么使用”文章吧。

“专业、务实、高效、创新、把客户的事当成自己的事”是我们每一个人一直以来坚持追求的企业文化。 创新互联是您可以信赖的网站建设服务商、专业的互联网服务提供商! 专注于成都网站设计、做网站、软件开发、设计服务业务。我们始终坚持以客户需求为导向,结合用户体验与视觉传达,提供有针对性的项目解决方案,提供专业性的建议,创新互联建站将不断地超越自我,追逐市场,引领市场!

Python的concat与merge函数怎么使用

一、concat函数

  1. concat()函数可以沿着一条轴将多个对象进行堆叠,其使用方式类似数据库中的数据表合并
    pandas.concat(objs, axis=0, join=’outer’, join_axes=None, ignore_index=False, keys=None, levels=None, verify_integrity=False, sort=None, copy=True)

  2. 参数含义如下:

参数作用
axis表示连接的轴向,可以为0或者1,默认为0
join表示连接的方式,inner表示内连接,outer表示外连接,默认使用外连接
ignore_index接收布尔值,默认为False。如果设置为True,则表示清除现有索引并重置索引值
keys接收序列,表示添加最外层索引
levels用于构建MultiIndex的特定级别(唯一值)
names设置了keys和level参数后,用于创建分层级别的名称
verify_integerity检查新的连接轴是否包含重复项。接收布尔值,当设置为True时,如果有重复的轴将会抛出错误,默认为False
  1. 根据轴方向的不同,可以将堆叠分成横向堆叠纵向堆叠,默认采用的是纵向堆叠方式

Python的concat与merge函数怎么使用

  1. 在堆叠数据时,默认采用的是外连接(join参数设为outer)的方式进行合并,当然也可以通过join=inner设置为内连接的方式。

Python的concat与merge函数怎么使用

1)横向堆叠与外连接

import pandas as pd
df1=pd.DataFrame({'A':['A0','A1','A2'],
                  'B':['B0','B1','B2']})df1

Python的concat与merge函数怎么使用

df2=pd.DataFrame({'C':['C0','C1','C2'],
                  'D':['D0','D1','D2']})df2

Python的concat与merge函数怎么使用

横向堆叠合并df1和df2,采用外连接的方式

pd.concat([df1,df2],join='outer',axis=1)

Python的concat与merge函数怎么使用

2) 纵向堆叠与内链接

import pandas as pd
first=pd.DataFrame({'A':['A0','A1','A2'],
                   'B':['B0','B1','B2'],
                   'C':['C0','C1','C2']})first

Python的concat与merge函数怎么使用

second=pd.DataFrame({'B':['B3','B4','B5'],
                   'C':['C3','C4','C5'],
                    'D':['D3','D4','D5']})second

Python的concat与merge函数怎么使用

  1. 当使用concat()函数合并时,若是将axis参数的值设为0,且join参数的值设为inner,则代表着使用纵向堆叠与内连接的方式进行合并

pd.concat([first,second],join='inner',axis=0)

Python的concat与merge函数怎么使用

二、merge()函数

1)主键合并数据

  1. 在使用merge()函数进行合并时,默认会使用重叠的列索引做为合并键,并采用内连接方式合并数据,即取行索引重叠的部分。

import pandas as pd
left=pd.DataFrame({'key':['K0','K1','K2'],
                  'A':['A0','A1','A2'],
                  'B':['B0','B1','B2']})left

Python的concat与merge函数怎么使用

right=pd.DataFrame({'key':['K0','K1','K2','K3'],
                   'C':['C0','C1','C2','C3'],
                   'D':['D0','D1','D2','D3']})right

Python的concat与merge函数怎么使用

pd.merge(left,right,on='key')

Python的concat与merge函数怎么使用

2)merge()函数还支持对含有多个重叠列的DataFrame对象进行合并。

import pandas as pd
data1=pd.DataFrame({'key':['K0','K1','K2'],
                  'A':['A0','A1','A2'],
                  'B':['B0','B1','B2']})data1

Python的concat与merge函数怎么使用

data2=pd.DataFrame({'key':['K0','K5','K2','K4'],
                         'B':['B0','B1','B2','B5'],
                         'C':['C0','C1','C2','C3'],
                         'D':['D0','D1','D2','D3']})data2

Python的concat与merge函数怎么使用

pd.merge(data1,data2,on=['key','B'])

Python的concat与merge函数怎么使用

1)根据行索引合并数据

  1. join()方法能够通过索引或指定列来连接多个DataFrame对象

  2. join(other,on = None,how =‘left’,lsuffix =‘’,rsuffix =‘’,sort = False )

参数作用
on名称,用于连接列名
how可以从{‘‘left’’ ,‘‘right’’, ‘‘outer’’, ‘‘inner’’}中任选一个,默认使用左连接的方式。
sort根据连接键对合并的数据进行排序,默认为False
import pandas as pd
data3=pd.DataFrame({'A':['A0','A1','A2'],
                   'B':['B0','B1','B2']})data3

Python的concat与merge函数怎么使用

data4=pd.DataFrame({'C': ['C0', 'C1', 'C2'],
                         'D': ['D0', 'D1', 'D2']},
                     index=['a','b','c'])data3.join(data4,how='outer')  # 外连接

Python的concat与merge函数怎么使用

data3.join(data4,how='left')  #左连接

Python的concat与merge函数怎么使用

data3.join(data4,how='right')  #右连接

Python的concat与merge函数怎么使用

data3.join(data4,how='inner')  #内连接

Python的concat与merge函数怎么使用

import pandas as pd
left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                        'B': ['B0', 'B1', 'B2'],
                      'key': ['K0', 'K1', 'K2']})left

Python的concat与merge函数怎么使用

right = pd.DataFrame({'C': ['C0', 'C1','C2'],
                         'D': ['D0', 'D1','D2']},
                        index=['K0', 'K1','K2'])right

Python的concat与merge函数怎么使用
on参数指定连接的列名

left.join(right,how='left',on='key')  #on参数指定连接的列名

Python的concat与merge函数怎么使用

2)合并重叠数据

当DataFrame对象中出现了缺失数据,而我们希望使用其他DataFrame对象中的数据填充缺失数据,则可以通过combine_first()方法为缺失数据填充。

import pandas as pdimport numpy as npfrom numpy import NAN
left = pd.DataFrame({'A': [np.nan, 'A1', 'A2', 'A3'],
                        'B': [np.nan, 'B1', np.nan, 'B3'],
                        'key': ['K0', 'K1', 'K2', 'K3']})left

Python的concat与merge函数怎么使用

right = pd.DataFrame({'A': ['C0', 'C1','C2'],
                         'B': ['D0', 'D1','D2']},
                         index=[1,0,2])right

Python的concat与merge函数怎么使用
用right的数据填充left缺失的部分

left.combine_first(right) # 用right的数据填充left缺失的部分

Python的concat与merge函数怎么使用

以上就是关于“Python的concat与merge函数怎么使用”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注创新互联行业资讯频道。


网站栏目:Python的concat与merge函数怎么使用
浏览路径:http://kswjz.com/article/pispgo.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流