php大数据处理方案,php处理大文件-成都快上网建站

php大数据处理方案,php处理大文件

PHP-大数据量怎么处理优化

大数据的话可以进行以下操作:

成都创新互联服务项目包括若羌网站建设、若羌网站制作、若羌网页制作以及若羌网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,若羌网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到若羌省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

减少对数据库的读取,也就是减少调用数据库,

进行数据缓存,

利用数据库的自身优化技术,如索引等

精确查询条件,有利于提高查找速度

php采集大数据的方案

1、建议你读写数据和下载图片分开,各用不同的进程完成。

比如说,取数据用get-data.php,下载图片用get-image.php。

2、多进程的话,php可以简单的用pcntl_fork()。这样可以并发多个子进程。

但是我不建议你用fork,我建议你安装一个gearman worker。这样你要并发几个,就启几个worker,写代码简单,根本不用在代码里考虑thread啊,process等等。

3、综上,解决方案这样:

(1)安装gearman worker。

(2)写一个get-data.php,在crontab里设置它每5分钟执行一次,只负责读数据,然后把读回来的数据一条一条的扔到 gearman worker的队列里;

然后再写一个处理数据的脚本作为worker,例如叫process-data.php,这个脚本常驻内存。它作为worker从geraman 队列里读出一条一条的数据,然后跟你的数据库老数据比较,进行你的业务逻辑。如果你要10个并发,那就启动10个process-data.php好了。处理完后,如果图片地址有变动需要下载图片,就把图片地址扔到 gearman worker的另一个队列里。

(3)再写一个download-data.php,作为下载图片的worker,同样,你启动10个20个并发随便你。这个进程也常驻内存运行,从gearman worker的图片数据队列里取数据出来,下载图片

4、常驻进程的话,就是在代码里写个while(true)死循环,让它一直运行好了。如果怕内存泄露啥的,你可以每循环10万次退出一下。然后在crontab里设置,每分钟检查一下进程有没有启动,比如说这样启动3个process-data worker进程:

* * * * * flock -xn /tmp/process-data.1.lock -c '/usr/bin/php /process-data.php /dev/null 21'

* * * * * flock -xn /tmp/process-data.2.lock -c '/usr/bin/php /process-data.php /dev/null 21'

* * * * * flock -xn /tmp/process-data.3.lock -c '/usr/bin/php /process-data.php /dev/null 21'

不知道你明白了没有

PHP如何解决网站的大数据大流量与高并发

使用缓存,比如memcache,redis,因为它们是在内存中运行,所以处理数据,返回数据非常快,所以可以应对高并发。

2.增加带宽和机器性能,1M的带宽同时处理的流量肯定有限,所以在资源允许的情况下,大带宽,多核cpu,高内存是一个解决方案。

3.分布式,让多个访问分到不同的机器上去处理,每个机器处理的请求就相对减少了。

简单说些常用技术,负载均衡,限流,加速器等

php 高并发解决思路解决方案

php 高并发解决思路解决方案,如何应对网站大流量高并发情况。本文为大家总结了常用的处理方式,但不是细节,后续一系列细节教程给出。希望大家喜欢。

一 高并发的概念

在互联网时代,并发,高并发通常是指并发访问。也就是在某个时间点,有多少个访问同时到来。

二 高并发架构相关概念

1、QPS (每秒查询率) : 每秒钟请求或者查询的数量,在互联网领域,指每秒响应请求数(指 HTTP 请求)

2、PV(Page View):综合浏览量,即页面浏览量或者点击量,一个访客在 24 小时内访问的页面数量

--注:同一个人浏览你的网站的同一页面,只记做一次 pv

3、吞吐量(fetches/sec) :单位时间内处理的请求数量 (通常由 QPS 和并发数决定)

4、响应时间:从请求发出到收到响应花费的时间

5、独立访客(UV):一定时间范围内,相同访客多次访问网站,只计算为 1 个独立访客

6、带宽:计算带宽需关注两个指标,峰值流量和页面的平均大小

7、日网站带宽: PV/统计时间(换算到秒) * 平均页面大小(kb)* 8

三 需要注意点:

1、QPS 不等于并发连接数(QPS 是每秒 HTTP 请求数量,并发连接数是系统同时处理的请求数量)

2、峰值每秒请求数(QPS)= (总 PV 数*80%)/ (六小时秒数*20%)【代表 80%的访问量都集中在 20%的时间内】

3、压力测试: 测试能承受的最大并发数 以及测试最大承受的 QPS 值

4、常用的性能测试工具【ab,wrk,httpload,Web Bench,Siege,Apache JMeter】

四 优化

1、当 QPS 小于 50 时

优化方案:为一般小型网站,不用考虑优化

2、当 QPS 达到 100 时,遇到数据查询瓶颈

优化方案: 数据库缓存层,数据库的负载均衡

3、当 QPS 达到 800 时, 遇到带宽瓶颈

优化方案:CDN 加速,负载均衡

4、当 QPS 达到 1000 时

优化方案: 做 html 静态缓存

5、当 QPS 达到 2000 时

优化方案: 做业务分离,分布式存储

五、高并发解决方案案例:

1、流量优化

防盗链处理(去除恶意请求)

2、前端优化

(1) 减少 HTTP 请求[将 css,js 等合并]

(2) 添加异步请求(先不将所有数据都展示给用户,用户触发某个事件,才会异步请求数据)

(3) 启用浏览器缓存和文件压缩

(4) CDN 加速

(5) 建立独立的图片服务器(减少 I/O)

3、服务端优化

(1) 页面静态化

(2) 并发处理

(3) 队列处理

4、数据库优化

(1) 数据库缓存

(2) 分库分表,分区

(3) 读写分离

(4) 负载均衡

5、web 服务器优化

(1) nginx 反向代理实现负载均衡

(2) lvs 实现负载均衡

php 怎么解决 大数据量 插入数据库(1次几千条数据)

如果是用mysql数据库的话,一条语句可以插入几千条语句。类似以下语句:

insert into table_name (field1,field2) values (1,2),(2,3),(3,5),(5,6)

请查看mysql手册。

其他数据库请查阅相应手册。


当前名称:php大数据处理方案,php处理大文件
当前地址:http://kswjz.com/article/phjshs.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流