扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
限流算法目前程序开发过程常用的限流算法有两个:漏桶算法和令牌桶算法。
我们提供的服务有:成都网站建设、做网站、微信公众号开发、网站优化、网站认证、乐山ssl等。为数千家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的乐山网站制作公司
漏桶算法
漏桶算法的原理比较简单,请求进入到漏桶中,漏桶以一定的速率漏水。当请求过多时,水直接溢出。可以看出,漏桶算法可以强制限制数据的传输速度。如图所示,把请求比作是水滴,水先滴到桶里,通过漏洞并以限定的速度出水,当水来得过猛而出水不够快时就会导致水直接溢出,即拒绝服务。
图片来自网络
漏桶的出水速度是恒定的,那么意味着如果瞬时大流量的话,将有大部分请求被丢弃掉(也就是所谓的溢出)。
令牌桶算法
令牌桶算法的原理是系统以一定速率向桶中放入令牌,如果有请求时,请求会从桶中取出令牌,如果能取到令牌,则可以继续完成请求,否则等待或者拒绝服务。这种算法可以应对突发程度的请求,因此比漏桶算法好。
图片来自网络
漏桶算法和令牌桶算法的选择
两者的主要区别漏桶算法能够强行限制处理数据的速率,不论系统是否空闲。而令牌桶算法能够在限制数据的平均处理速率的同时还允许某种程度的突发流量。如何理解上面的含义呢?漏桶算法,比如系统吞吐量是 120/s,业务请求 130/s,使用漏斗限流 100/s,起到限流的作用,多余的请求将产生等待或者丢弃。对于令牌桶算法,每秒产生 100 个令牌,系统容量 200 个令牌。正常情况下,业务请求 100/s 时,请求能被正常被处理。当有突发流量过来比如 200 个请求时,因为系统容量有 200 个令牌可以同一时刻处理掉这 200 个请求。如果是漏桶算法,则只能处理 100 个请求,其他的请求等待或者被丢弃。
想要知道如何处理数据并发,自然需要先了解数据并发。
什么是数据并发操作呢?
就是同一时间内,不同的线程同时对一条数据进行读写操作。
在互联网时代,一个系统常常有很多人在使用,因此就可能出现高并发的现象,也就是不同的用户同时对一条数据进行操作,如果没有有效的处理,自然就会出现数据的异常。而最常见的一种数据并发的场景就是电商中的秒杀,成千上万个用户对在极端的时间内,抢购一个商品。针对这种场景,商品的库存就是一个需要控制的数据,而多个用户对在同一时间对库存进行重写,一个不小心就可能出现超卖的情况。
针对这种情况,我们如何有效的处理数据并发呢?
第一种方案、数据库锁
从锁的基本属性来说,可以分为两种:一种是共享锁(S),一种是排它锁(X)。在MySQL的数据库中,是有四种隔离级别的,会在读写的时候,自动的使用这两种锁,防止数据出现混乱。
这四种隔离级别分别是:
读未提交(Read Uncommitted)
读提交(Read Committed)
可重复读(Repeated Read)
串行化(Serializable)
当然,不同的隔离级别,效率也是不同的,对于数据的一致性保证也就有不同的结果。而这些可能出现的又有哪些呢?
脏读(dirty read)
当事务与事务之间没有任何隔离的时候,就可能会出现脏读。例如:商家想看看所有的订单有哪些,这时,用户A提交了一个订单,但事务还没提交,商家却看到了这个订单。而这时就会出现一种问题,当商家去操作这个订单时,可能用户A的订单由于部分问题,导致数据回滚,事务没有提交,这时商家的操作就会失去目标。
不可重复读(unrepeatable read)
一个事务中,两次读操作出来的同一条数据值不同,就是不可重复读。
例如:我们有一个事务A,需要去查询一下商品库存,然后做扣减,这时,事务B操作了这个商品,扣减了一部分库存,当事务A再次去查询商品库存的时候,发现这一次的结果和上次不同了,这就是不可重复读。
幻读(phantom problem)
一个事务中,两次读操作出来的结果集不同,就是幻读。
例如:一个事务A,去查询现在已经支付的订单有哪些,得到了一个结果集。这时,事务B新提交了一个订单,当事务A再次去查询时,就会出现,两次得到的结果集不同的情况,也就是幻读了。
那针对这些结果,不同的隔离级别可以干什么呢?
“读未提(Read Uncommitted)”能预防啥?啥都预防不了。
“读提交(Read Committed)”能预防啥?使用“快照读(Snapshot Read)”方式,避免“脏读”,但是可能出现“不可重复读”和“幻读”。
“可重复读(Repeated Red)”能预防啥?使用“快照读(Snapshot Read)”方式,锁住被读取记录,避免出现“脏读”、“不可重复读”,但是可能出现“幻读”。
“串行化(Serializable)”能预防啥?有效避免“脏读”、“不可重复读”、“幻读”,不过运行效率奇差。
好了,锁说完了,但是,我们的数据库锁,并不能有效的解决并发的问题,只是尽可能保证数据的一致性,当并发量特别大时,数据库还是容易扛不住。那解决数据并发的另一个手段就是,尽可能的提高处理的速度。
因为数据的IO要提升难度比较大,那么通过其他的方式,对数据进行处理,减少数据库的IO,就是提高并发能力的有效手段了。
最有效的一种方式就是:缓存
想要减少并发出现的概率,那么读写的效率越高,读写的执行时间越短,自然数据并发的可能性就变小了,并发性能也有提高了。
还是用刚才的秒杀举例,我们为的就是保证库存的数据不出错,卖出一个商品,减一个库存,那么,我们就可以将库存放在内存中进行处理。这样,就能够保证库存有序的及时扣减,并且不出现问题。这样,我们的数据库的写操作也变少了,执行效率也就大大提高了。
当然,常用的分布式缓存方式有:Redis和Memcache,Redis可以持久化到硬盘,而Memcache不行,应该怎么选择,就看具体的使用场景了。
当然,缓存毕竟使用的范围有限,很多的数据我们还是必须持久化到硬盘中,那我们就需要提高数据库的IO能力,这样避免一个线程执行时间太长,造成线程的阻塞。
那么,读写分离就是另一种有效的方式了
当我们的写成为了瓶颈的时候,读写分离就是一种可以选择的方式了。
我们的读库就只需要执行读,写库就只需要执行写,把读的压力从主库中分离出去,让主库的资源只是用来保证写的效率,从而提高写操作的性能。
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppassword
设置新的最大连接数为200:mysql set GLOBAL max_connections=200
显示当前运行的Query:mysql show processlist
显示当前状态:mysql show status
退出客户端:mysql exit
查看当前最大连接数:mysqladmin -uusername -ppassword variables
使用mysql异步查询,需要使用mysqlnd作为PHP的MySQL数据库驱动。 使用MySQL异步... 如果创建的线程过多,则会造成线程切换引起系统负载过高。Swoole中的异步MySQL其...
1、使用行级别锁,避免表级别或页级别锁
尽量使用支持行级别锁的存储引擎,如InnoDB;只在读操作显著多于写作的场景中(如数据仓库类的应用)使用表级别锁的存储引擎,如MyISAM;。
2、降低热巨锁(hot gaint lock)出现的可能性以尽可能避免全局互斥量
临界区(仅允许单一线程访问的资源)会严重降低MySQL系统并发性;InnoDB缓冲池(buffer pool)、数据字典等都是常见的临界区;幸运的是,新版本的InnoDB已经能够较好的运行于多核处理器,支持使用 innodb_buffer_pool_instances服务器变量建立多个缓冲池实例,每个缓冲池实例分别自我管理空闲列表、列表刷写、LRU以及其它跟缓冲池相关的数据结构,并通过各自的互斥锁进行保护。
3、并行运行多个I/O线程
通过innodb_io_capacity服务器变量等增加磁盘I/O线程的数量可以提高前端操作(如SELECT)的性能,不过,磁盘I/O线程的数量不应该超过磁盘的IOPS(7200RPM的单块硬件的IOPS数量一般为100个左右)。
此外,异步I/O也可以在一定程度上提高系统的并发能力,在Linux系统上,可以通过将MySQL的服务器变量innodb_use_native_aio的值设定为ON设定InnoDB可以使用Linux的异步I/O子系统。
4、并行后端任务
默认情况下,MySQL的清写(purge)操作(用于移除带删除标记的记录)由InnoDB的主线程完成,这可以降低内部资源竞争发生的概率,进而增强MySQL服务伸缩能力。不过,随着InnoDB内部各式各样的竞争越来越多,这种设置带来的性能优势已几乎不值一提,因此,生产环境中应该通过为innodb_purge_threads服务器变量设定为ON将主线程与清写线程分开运行。
5、单线程复制模型中的SQL线程是一个热区
在从服务器上并行运行多个SQL线程可有效提高MySQL从服务器性能,MySQL 5.6支持多线程复制(每库一个复制线程);
mysql的最大连接数默认是100, 这个数值对于并发连接很多的数据库应用是远远不够的,当连接请求大于默认连接数后,就会出现无法连接数据库的错误,因此我们需要把它适当调大一些。
调节方法为:
1.linux服务器中:改my.cnf中的值就行了
2.Windows服务器中(我用的):
在文件“my.ini”中找到段 [mysqld],在其中添加一行
max_connections=200 ### 200可以更改为想设置成的值.
然后重启"mysql"服务。
/mysqladmin所在路径/mysqladmin -uroot -p variables
输入root数据库账号的密码后可看到
| max_connections | 1000 |
其他需注意的:
在编程时,由于用mysql语句调用数据库时,在每次之执行语句前,会做一个临时的变量用来打开数据库,所以你在使用mysql语句的时候,记得在每次调用完mysql之后就关闭mysql临时变量。
另外对于访问量大的,可以考虑直接写到文本中,根据预测的访问量,先定义假若是100个文件文件名依次为1.txt,2.txt...100.txt。需要的时候,再对所有文本文件中的数据进行分析,再导入数据库。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流