扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章主要为大家展示了“iOS如何实现去除图片背景颜色”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“iOS如何实现去除图片背景颜色”这篇文章吧。
成都创新互联于2013年创立,是专业互联网技术服务公司,拥有项目成都网站制作、成都做网站、外贸营销网站建设网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元明山做网站,已为上家服务,为明山各地企业和个人服务,联系电话:028-86922220
实际项目场景:去除图片的纯白色背景图,获得一张透明底图片用于拼图功能
介绍两种途径的三种处理方式,具体性能鶸并未对比,如果有大佬能告知,不胜感激。
Core Image Core Graphics/Quarz 2D Core Image
Core Image是一个很强大的框架。它可以让你简单地应用各种滤镜来处理图像,比如修改鲜艳程度,色泽,或者曝光。 它利用GPU(或者CPU)来非常快速、甚至实时地处理图像数据和视频的帧。并且隐藏了底层图形处理的所有细节,通过提供的API就能简单的使用了,无须关心OpenGL或者OpenGL ES是如何充分利用GPU的能力的,也不需要你知道GCD在其中发挥了怎样的作用,Core Image处理了全部的细节。
在苹果官方文档Core Image Programming Guide中,提到了Chroma Key Filter Recipe对于处理背景的范例
其中使用了HSV颜色模型,因为HSV模型,对于颜色范围的表示,相比RGB更加友好。
大致过程处理过程:
创建一个映射希望移除颜色值范围的立方体贴图cubeMap,将目标颜色的Alpha
置为0.0f
使用CIColorCube
滤镜和cubeMap对源图像进行颜色处理获取到经过CIColorCube
处理的Core Image
对象CIImage
,转换为Core Graphics
中的CGImageRef
对象,通过imageWithCGImage:
获取结果图片
注意:第三步中,不可以直接使用imageWithCIImage:
,因为得到的并不是一个标准的UIImage
,如果直接拿来用,会出现不显示的情况。
- (UIImage *)removeColorWithMinHueAngle:(float)minHueAngle maxHueAngle:(float)maxHueAngle image:(UIImage *)originalImage{ CIImage *image = [CIImage imageWithCGImage:originalImage.CGImage]; CIContext *context = [CIContext contextWithOptions:nil];// kCIContextUseSoftwareRenderer : CPURender /** 注意 * UIImage 通过CIimage初始化,得到的并不是一个通过类似CGImage的标准UIImage * 所以如果不用context进行渲染处理,是没办法正常显示的 */ CIImage *renderBgImage = [self outputImageWithOriginalCIImage:image minHueAngle:minHueAngle maxHueAngle:maxHueAngle]; CGImageRef renderImg = [context createCGImage:renderBgImage fromRect:image.extent]; UIImage *renderImage = [UIImage imageWithCGImage:renderImg]; return renderImage; } struct CubeMap { int length; float dimension; float *data; }; - (CIImage *)outputImageWithOriginalCIImage:(CIImage *)originalImage minHueAngle:(float)minHueAngle maxHueAngle:(float)maxHueAngle{ struct CubeMap map = createCubeMap(minHueAngle, maxHueAngle); const unsigned int size = 64; // Create memory with the cube data NSData *data = [NSData dataWithBytesNoCopy:map.data length:map.length freeWhenDone:YES]; CIFilter *colorCube = [CIFilter filterWithName:@"CIColorCube"]; [colorCube setValue:@(size) forKey:@"inputCubeDimension"]; // Set data for cube [colorCube setValue:data forKey:@"inputCubeData"]; [colorCube setValue:originalImage forKey:kCIInputImageKey]; CIImage *result = [colorCube valueForKey:kCIOutputImageKey]; return result; } struct CubeMap createCubeMap(float minHueAngle, float maxHueAngle) { const unsigned int size = 64; struct CubeMap map; map.length = size * size * size * sizeof (float) * 4; map.dimension = size; float *cubeData = (float *)malloc (map.length); float rgb[3], hsv[3], *c = cubeData; for (int z = 0; z < size; z++){ rgb[2] = ((double)z)/(size-1); // Blue value for (int y = 0; y < size; y++){ rgb[1] = ((double)y)/(size-1); // Green value for (int x = 0; x < size; x ++){ rgb[0] = ((double)x)/(size-1); // Red value rgbToHSV(rgb,hsv); // Use the hue value to determine which to make transparent // The minimum and maximum hue angle depends on // the color you want to remove float alpha = (hsv[0] > minHueAngle && hsv[0] < maxHueAngle) ? 0.0f: 1.0f; // Calculate premultiplied alpha values for the cube c[0] = rgb[0] * alpha; c[1] = rgb[1] * alpha; c[2] = rgb[2] * alpha; c[3] = alpha; c += 4; // advance our pointer into memory for the next color value } } } map.data = cubeData; return map; }
rgbToHSV
在官方文档中并没有提及,笔者在下文中提到的大佬的博客中找到了相关转换处理。感谢
void rgbToHSV(float *rgb, float *hsv) { float min, max, delta; float r = rgb[0], g = rgb[1], b = rgb[2]; float *h = hsv, *s = hsv + 1, *v = hsv + 2; min = fmin(fmin(r, g), b ); max = fmax(fmax(r, g), b ); *v = max; delta = max - min; if( max != 0 ) *s = delta / max; else { *s = 0; *h = -1; return; } if( r == max ) *h = ( g - b ) / delta; else if( g == max ) *h = 2 + ( b - r ) / delta; else *h = 4 + ( r - g ) / delta; *h *= 60; if( *h < 0 ) *h += 360; }
接下来我们试一下,去除绿色背景的效果如何
我们可以通过使用HSV工具,确定绿色HUE
值的大概范围为50-170
调用一下方法试一下
[[SPImageChromaFilterManager sharedManager] removeColorWithMinHueAngle:50 maxHueAngle:170 image:[UIImage imageWithContentsOfFile:[[NSBundle mainBundle] pathForResource:@"nb" ofType:@"jpeg"]]]
效果
效果还可以的样子。
如果认真观察HSV模型的同学也许会发现,我们通过指定色调角度(Hue)的方式,对于指定灰白黑显得无能为力。我们不得不去用饱和度(Saturation)和明度(Value)去共同判断,感兴趣的同学可以在代码中判断Alpha float alpha = (hsv[0] > minHueAngle && hsv[0] < maxHueAngle) ? 0.0f: 1.0f;那里试一下效果。(至于代码中为啥RGB和HSV这么转换,请百度他们的转换,因为鶸笔者也不懂。哎,鶸不聊生)
对于Core Image感兴趣的同学,请移步大佬的系列文章
iOS8 Core Image In Swift:自动改善图像以及内置滤镜的使用
iOS8 Core Image In Swift:更复杂的滤镜
iOS8 Core Image In Swift:人脸检测以及马赛克
iOS8 Core Image In Swift:视频实时滤镜
Core Graphics/Quarz 2D
上文中提到的基于OpenGl
的Core Image
显然功能十分强大,作为视图另一基石的Core Graphics同样强大。对他的探究,让鶸笔者更多的了解到图片的相关知识。所以在此处总结,供日后查阅。
如果对探究不感兴趣的同学,请直接跳到文章最后 Masking an Image with Color 部分
Bitmap
在Quarz 2D官方文档中,对于BitMap有如下描述:
A bitmap image (or sampled image) is an array of pixels (or samples). Each pixel represents a single point in the image. JPEG, TIFF, and PNG graphics files are examples of bitmap images.
32-bit and 16-bit pixel formats for CMYK and RGB color spaces in Quartz 2D
回到我们的需求,对于去除图片中的指定颜色,如果我们能够读取到每个像素上的RGBA信息,分别判断他们的值,如果符合目标范围,我们将他的Alpha值改为0,然后输出成新的图片,那么我们就实现了类似上文中cubeMap的处理方式。
强大的Quarz 2D
为我们提供了实现这种操作的能力,下面请看代码示例:
- (UIImage *)removeColorWithMaxR:(float)maxR minR:(float)minR maxG:(float)maxG minG:(float)minG maxB:(float)maxB minB:(float)minB image:(UIImage *)image{ // 分配内存 const int imageWidth = image.size.width; const int imageHeight = image.size.height; size_t bytesPerRow = imageWidth * 4; uint32_t* rgbImageBuf = (uint32_t*)malloc(bytesPerRow * imageHeight); // 创建context CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();// 色彩范围的容器 CGContextRef context = CGBitmapContextCreate(rgbImageBuf, imageWidth, imageHeight, 8, bytesPerRow, colorSpace,kCGBitmapByteOrder32Little | kCGImageAlphaNoneSkipLast); CGContextDrawImage(context, CGRectMake(0, 0, imageWidth, imageHeight), image.CGImage); // 遍历像素 int pixelNum = imageWidth * imageHeight; uint32_t* pCurPtr = rgbImageBuf; for (int i = 0; i < pixelNum; i++, pCurPtr++) { uint8_t* ptr = (uint8_t*)pCurPtr; if (ptr[3] >= minR && ptr[3] <= maxR && ptr[2] >= minG && ptr[2] <= maxG && ptr[1] >= minB && ptr[1] <= maxB) { ptr[0] = 0; }else{ printf("\n---->ptr0:%d ptr1:%d ptr2:%d ptr3:%d<----\n",ptr[0],ptr[1],ptr[2],ptr[3]); } } // 将内存转成image CGDataProviderRef dataProvider =CGDataProviderCreateWithData(NULL, rgbImageBuf, bytesPerRow * imageHeight, nil); CGImageRef imageRef = CGImageCreate(imageWidth, imageHeight,8, 32, bytesPerRow, colorSpace,kCGImageAlphaLast |kCGBitmapByteOrder32Little, dataProvider,NULL,true,kCGRenderingIntentDefault); CGDataProviderRelease(dataProvider); UIImage* resultUIImage = [UIImage imageWithCGImage:imageRef]; // 释放 CGImageRelease(imageRef); CGContextRelease(context); CGColorSpaceRelease(colorSpace); return resultUIImage; }
还记得我们在Core Image中提到的HSV模式的弊端吗?那么Quarz 2D则是直接利用RGBA的信息进行处理,很好的规避了对黑白色不友好的问题,我们只需要设置一下RGB的范围即可(因为黑白色在RGB颜色模式中,很好确定),我们可以大致封装一下。如下
- (UIImage *)removeWhiteColorWithImage:(UIImage *)image{ return [self removeColorWithMaxR:255 minR:250 maxG:255 minG:240 maxB:255 minB:240 image:image]; }
- (UIImage *)removeBlackColorWithImage:(UIImage *)image{ return [self removeColorWithMaxR:15 minR:0 maxG:15 minG:0 maxB:15 minB:0 image:image]; }
看一下我们对于白色背景的处理效果对比
看起来似乎还不错,但是对于纱质的衣服,就显得很不友好。看一下笔者做的几组图片的测试
很显然,如果不是白色背景,“衣衫褴褛”的效果非常明显。这个问题,在笔者尝试的三种方法中,无一幸免,如果哪位大佬知道好的处理方法,而且能告诉鶸,将不胜感激。(先放俩膝盖在这儿)
除了上述问题外,这种对比每个像素的方法,读取出来的数值会同作图时出现误差。但是这种误差肉眼基本不可见。
如下图中,我们作图时,设置的RGB值分别为100/240/220 但是通过CG上述处理时,读取出来的值则为92/241/220。对比图中的“新的”“当前”,基本看不出色差。这点小问题各位知道就好,对实际去色效果影响并不大
Masking an Image with Color
笔者尝试过理解并使用上一种方法后,在重读文档时发现了这个方法,简直就像是发现了Father Apple的恩赐。直接上代码
- (UIImage *)removeColorWithMaxR:(float)maxR minR:(float)minR maxG:(float)maxG minG:(float)minG maxB:(float)maxB minB:(float)minB image:(UIImage *)image{ const CGFloat myMaskingColors[6] = {minR, maxR, minG, maxG, minB, maxB}; CGImageRef ref = CGImageCreateWithMaskingColors(image.CGImage, myMaskingColors); return [UIImage imageWithCGImage:ref]; }
以上是“iOS如何实现去除图片背景颜色”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流