扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
本文小编为大家详细介绍“MySQL索引下推是什么”,内容详细,步骤清晰,细节处理妥当,希望这篇“MySQL索引下推是什么”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。
创新互联于2013年成立,先为宜宾等服务建站,宜宾等地企业,进行企业商务咨询服务。为宜宾企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
MySQL
数据库由 Server
层和 Engine
层组成:
Server
层: 有 SQL
分析器、SQL
优化器、SQL
执行器,用于负责 SQL
语句的具体执行过程。
Engine
层: 负责存储具体的数据,如最常使用的 InnoDB
存储引擎,还有用于在内存中存储临时结果集的 TempTable
引擎。
通过客户端/服务器通信协议与 MySQL
建立连接。
查询缓存:
如果开启了 Query Cache
且在查询缓存过程中查询到完全相同的 SQL
语句,则将查询结果直接返回给客户端;
如果没有开启 Query Cache
或者没有查询到完全相同的 SQL
语句则会由解析器进行语法语义解析,并生成解析树。
分析器生成新的解析树。
查询优化器生成执行计划。
查询执行引擎执行 SQL
语句,此时查询执行引擎会根据 SQL
语句中表的存储引擎类型,以及对应的 API
接口与底层存储引擎缓存或者物理文件的交互情况,得到查询结果,由 MySQL Server
过滤后将查询结果缓存并返回给客户端。
若开启了
Query Cache
,这时也会将SQL
语句和结果完整地保存到Query Cache
中,以后若有相同的SQL
语句执行则直接返回结果。
Tips
:MySQL 8.0
已去掉 query cache
(查询缓存模块)。
因为查询缓存的命中率会非常低。 查询缓存的失效非常频繁:只要有对一个表的更新,这个表上所有的查询缓存都会被清空。
索引下推(Index Condition Pushdown
): 简称 ICP
,通过把索引过滤条件下推到存储引擎,来减少 MySQL
存储引擎访问基表的次数 和 MySQL
服务层访问存储引擎的次数。
索引下推 VS 覆盖索引: 其实都是 减少回表的次数,只不过方式不同
覆盖索引: 当索引中包含所需要的字段(SELECT XXX
),则不再回表去查询字段。
索引下推: 对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表的行数。
要了解 ICP
是如何工作的,先从一个查询 SQL
开始:
举个栗子:查询名字 la
开头、年龄为 18
的记录
SELECT * FROM user WHERE name LIKE 'la%' AND age = 18;
有这些记录:
不开启 ICP
时索引扫描是如何进行的:
通过索引元组,定位读取对应数据行。(实际上:就是回表)
对 WHERE
中字段做判断,过滤掉不满足条件的行。
使用 ICP
,索引扫描如下进行:
获取索引元组。
对 WHERE
中字段做判断,在索引列中进行过滤。
对满足条件的索引,进行回表查询整行。
对 WHERE
中字段做判断,过滤掉不满足条件的行。
实验:使用 MySQL
版本 8.0.16
-- 表创建 CREATE TABLE IF NOT EXISTS `user` ( `id` VARCHAR(64) NOT NULL COMMENT '主键 id', `name` VARCHAR(50) NOT NULL COMMENT '名字', `age` TINYINT NOT NULL COMMENT '年龄', `address` VARCHAR(100) NOT NULL COMMENT '地址', PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET utf8mb4 COLLATE=utf8mb4_unicode_ci COMMENT '用户表'; -- 创建索引 CREATE INDEX idx_name_age ON user (name, age); -- 新增数据 INSERT INTO user (id, name, age, address) VALUES (1, 'tt', 14, 'linhai'); INSERT INTO user (id, name, age, address) VALUES (2, 'lala', 18, 'linhai'); INSERT INTO user (id, name, age, address) VALUES (3, 'laxi', 30, 'linhai'); INSERT INTO user (id, name, age, address) VALUES (4, 'lawa', 40, 'linhai'); -- 查询语句 SELECT * FROM user WHERE name LIKE 'la%' AND age = 18;
新增数据如下:
关闭 ICP
,再调用 EXPLAIN
查看语句:
-- 将 ICP 关闭 SET optimizer_switch = 'index_condition_pushdown=off'; -- 查看确认 show variables like 'optimizer_switch'; -- 用 EXPLAIN 查看 EXPLAIN SELECT * FROM user WHERE name LIKE 'la%' AND age = 18;
开启 ICP
,再调用 EXPLAIN
查看语句:
-- 将 ICP 打开 SET optimizer_switch = 'index_condition_pushdown=on'; -- 查看确认 show variables like 'optimizer_switch'; -- 用 EXPLAIN 查看 EXPLAIN SELECT * FROM user WHERE name LIKE 'la%' AND age = 18;
由上实验可知,区别是否开启 ICP
: Exira
字段中的 Using index condition
更进一步,来看下 ICP
带来的性能提升:
通过访问数据文件的次数
-- 1. 清空 status 状态 flush status; -- 2. 查询 SELECT * FROM user WHERE name LIKE 'la%' AND age = 18; -- 3. 查看 handler 状态 show status like '%handler%';
对比开启 ICP
和 关闭 ICP
: 关注 Handler_read_next
的值
-- 开启 ICP flush status; SELECT * FROM user WHERE name LIKE 'la%' AND age = 18; show status like '%handler%'; +----------------------------|-------+ | Variable_name | Value | +----------------------------|-------+ | Handler_commit | 1 | | Handler_delete | 0 | | Handler_discover | 0 | | Handler_external_lock | 2 | | Handler_mrr_init | 0 | | Handler_prepare | 0 | | Handler_read_first | 0 | | Handler_read_key | 1 | | Handler_read_last | 0 | | Handler_read_next | 1 | <---重点 | Handler_read_prev | 0 | | Handler_read_rnd | 0 | | Handler_read_rnd_next | 0 | | Handler_rollback | 0 | | Handler_savepoint | 0 | | Handler_savepoint_rollback | 0 | | Handler_update | 0 | | Handler_write | 0 | +----------------------------|-------+ 18 rows in set (0.00 sec) -- 关闭 ICP flush status; SELECT * FROM user WHERE name LIKE 'la%' AND age = 18; show status like '%handler%'; +----------------------------|-------+ | Variable_name | Value | +----------------------------|-------+ | Handler_commit | 1 | | Handler_delete | 0 | | Handler_discover | 0 | | Handler_external_lock | 2 | | Handler_mrr_init | 0 | | Handler_prepare | 0 | | Handler_read_first | 0 | | Handler_read_key | 1 | | Handler_read_last | 0 | | Handler_read_next | 3 | <---重点 | Handler_read_prev | 0 | | Handler_read_rnd | 0 | | Handler_read_rnd_next | 0 | | Handler_rollback | 0 | | Handler_savepoint | 0 | | Handler_savepoint_rollback | 0 | | Handler_update | 0 | | Handler_write | 0 | +----------------------------|-------+ 18 rows in set (0.00 sec)
由上实验可知:
开启 ICP
:Handler_read_next
等于 1,回表查 1 次。
关闭 ICP
:Handler_read_next
等于 3,回表查 3 次。
这实验跟上面的栗子就对应上了。
根据官网可知,索引下推 受以下条件限制:
当需要访问整个表行时,ICP
用于 range
、 ref
、 eq_ref
和 ref_or_null
ICP
可以用于 InnoDB
和 MyISAM
表,包括分区表 InnoDB
和 MyISAM
表。
对于 InnoDB
表,ICP
仅用于二级索引。ICP
的目标是减少全行读取次数,从而减少 I/O
操作。对于 InnoDB
聚集索引,完整的记录已经读入 InnoDB
缓冲区。在这种情况下使用 ICP
不会减少 I/O
。
在虚拟生成列上创建的二级索引不支持 ICP
。InnoDB
支持虚拟生成列的二级索引。
引用子查询的条件不能下推。
引用存储功能的条件不能被按下。存储引擎不能调用存储的函数。
触发条件不能下推。
不能将条件下推到包含对系统变量的引用的派生表。(MySQL 8.0.30
及更高版本)。
小结下:
ICP
仅适用于 二级索引。
ICP
目标是 减少回表查询。
ICP
对联合索引的部分列模糊查询非常有效。
CREATE TABLE UserLogin ( userId BIGINT, loginInfo JSON, cellphone VARCHAR(255) AS (loginInfo->>"$.cellphone"), PRIMARY KEY(userId), UNIQUE KEY idx_cellphone(cellphone) );
列 cellphone
:就是一个虚拟列,它是由后面的函数表达式计算而成,本身这个列不占用任何的存储空间,而索引 idx_cellphone
实质是一个函数索引。
好处: 在写 SQL
时可以直接使用这个虚拟列,而不用写冗长的函数。
举个栗子: 查询手机号
-- 不用虚拟列 SELECT * FROM UserLogin WHERE loginInfo->>"$.cellphone" = '13988888888' -- 使用虚拟列 SELECT * FROM UserLogin WHERE cellphone = '13988888888'
读到这里,这篇“MySQL索引下推是什么”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注创新互联行业资讯频道。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流