扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
本篇内容主要讲解“flink sql cdc怎么使用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“flink sql cdc怎么使用”吧!
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名注册、雅安服务器托管、营销软件、网站建设、陇南网站维护、网站推广。
CDC,Change Data Capture,变更数据获取的简称,使用CDC我们可以从数据库中获取已提交的更改并将这些更改发送到下游,供下游使用。这些变更可以包括INSERT,DELETE,UPDATE等.
用户可以在如下的场景使用cdc:
实时数据同步:比如我们将MySQL库中的数据同步到我们的数仓中。
数据库的实时物化视图。
在以前的数据同步中,比如我们想实时获取数据库的数据,一般采用的架构就是采用第三方工具,比如canal、debezium等,实时采集数据库的变更日志,然后将数据发送到kafka等消息队列。然后再通过其他的组件,比如flink、spark等等来消费kafka的数据,计算之后发送到下游系统。整体的架构如下所示:
对于上面的这种架构,flink承担的角色是计算层,目前flink提供的format有两种格式:canal-json和debezium-json,下面我们简单的介绍下。
在国内,用的比较多的是阿里巴巴开源的canal,我们可以使用canal订阅mysql的binlog日志,canal会将mysql库的变更数据组织成它固定的JSON或protobuf 格式发到kafka,以供下游使用。
canal解析后的json数据格式如下:
{
"data": [
{
"id": "111",
"name": "scooter",
"description": "Big 2-wheel scooter",
"weight": "5.18"
}
],
"database": "inventory",
"es": 1589373560000,
"id": 9,
"isDdl": false,
"mysqlType": {
"id": "INTEGER",
"name": "VARCHAR(255)",
"description": "VARCHAR(512)",
"weight": "FLOAT"
},
"old": [
{
"weight": "5.15"
}
],
"pkNames": [
"id"
],
"sql": "",
"sqlType": {
"id": 4,
"name": 12,
"description": 12,
"weight": 7
},
"table": "products",
"ts": 1589373560798,
"type": "UPDATE"
}
简单讲下几个核心的字段:
type : 描述操作的类型,包括‘UPDATE’, 'INSERT', 'DELETE'。
data : 代表操作的数据。如果为'INSERT',则表示行的内容;如果为'UPDATE',则表示行的更新后的状态;如果为'DELETE',则表示删除前的状态。
old :可选字段,如果存在,则表示更新之前的内容,如果不是update操作,则为 null。
完整的语义如下;
private String destination; // 对应canal的实例或者MQ的topic
private String groupId; // 对应mq的group id
private String database; // 数据库或schema
private String table; // 表名
private List pkNames;
private Boolean isDdl;
private String type; // 类型: INSERT UPDATE DELETE
// binlog executeTime
private Long es; // 执行耗时
// dml build timeStamp
private Long ts; // 同步时间
private String sql; // 执行的sql, dml sql为空
private List
在flink sql中,消费这个数据的sql如下:
CREATE TABLE topic_products (
id BIGINT,
name STRING,
description STRING,
weight DECIMAL(10, 2)
) WITH (
'connector' = 'kafka',
'topic' = 'products_binlog',
'properties.bootstrap.servers' = 'localhost:9092',
'properties.group.id' = 'testGroup',
'format' = 'canal-json' -- using canal-json as the format
)
其中DDL中的表的字段和类型要和mysql中的字段及类型能匹配的上,接下来我们就可以写flink sql来查询我们定义的topic_products了。
在国外,比较有名的类似canal的开源工具有debezium,它的功能较canal更加强大一些,不仅仅支持mysql。还支持其他的数据库的同步,比如 PostgreSQL、Oracle等,目前debezium支持的序列化格式为 JSON 和 Apache Avro 。
debezium提供的格式如下:
{
"before": {
"id": 111,
"name": "scooter",
"description": "Big 2-wheel scooter",
"weight": 5.18
},
"after": {
"id": 111,
"name": "scooter",
"description": "Big 2-wheel scooter",
"weight": 5.15
},
"source": {...},
"op": "u",
"ts_ms": 1589362330904,
"transaction": null
}
同样,使用flink sql来消费的时候,sql和上面使用canal类似,只需要把foramt改成debezium-json即可。
接下来我们看下flink的源码中canal-json格式的实现。canal 格式作为一种flink的格式,而且是source,所以也就是涉及到读取数据的时候进行反序列化,我们接下来就简单看看CanalJson的反序列化的实现。具体的实现类是CanalJsonDeserializationSchema。
我们看下这个最核心的反序列化方法:
@Override
public void deserialize(byte[] message, Collector out) throws IOException {
try {
//使用json反序列化器将message反序列化成RowData
RowData row = jsonDeserializer.deserialize(message);
//获取type字段,用于下面的判断
String type = row.getString(2).toString();
if (OP_INSERT.equals(type)) {
// 如果操作类型是insert,则data数组表示的是要插入的数据,则循环遍历data,然后添加一个标识INSERT,构造RowData对象,发送下游。
ArrayData data = row.getArray(0);
for (int i = 0; i < data.size(); i++) {
RowData insert = data.getRow(i, fieldCount);
insert.setRowKind(RowKind.INSERT);
out.collect(insert);
}
} else if (OP_UPDATE.equals(type)) {
// 如果是update操作,从data字段里获取更新后的数据、
ArrayData data = row.getArray(0);
// old字段获取更新之前的数据
ArrayData old = row.getArray(1);
for (int i = 0; i < data.size(); i++) {
// the underlying JSON deserialization schema always produce GenericRowData.
GenericRowData after = (GenericRowData) data.getRow(i, fieldCount);
GenericRowData before = (GenericRowData) old.getRow(i, fieldCount);
for (int f = 0; f < fieldCount; f++) {
if (before.isNullAt(f)) {
//如果old字段非空,则说明进行了数据的更新,如果old字段是null,则说明更新前后数据一样,这个时候把before的数据也设置成after的,也就是发送给下游的before和after数据一样。
before.setField(f, after.getField(f));
}
}
before.setRowKind(RowKind.UPDATE_BEFORE);
after.setRowKind(RowKind.UPDATE_AFTER);
//把更新前后的数据都发送下游
out.collect(before);
out.collect(after);
}
} else if (OP_DELETE.equals(type)) {
// 如果是删除操作,data字段里包含将要被删除的数据,把这些数据组织起来发送给下游
ArrayData data = row.getArray(0);
for (int i = 0; i < data.size(); i++) {
RowData insert = data.getRow(i, fieldCount);
insert.setRowKind(RowKind.DELETE);
out.collect(insert);
}
} else {
if (!ignoreParseErrors) {
throw new IOException(format(
"Unknown \"type\" value \"%s\". The Canal JSON message is '%s'", type, new String(message)));
}
}
} catch (Throwable t) {
// a big try catch to protect the processing.
if (!ignoreParseErrors) {
throw new IOException(format(
"Corrupt Canal JSON message '%s'.", new String(message)), t);
}
}
}
对于上面的架构,我们需要部署canal(debezium)+ kafka,然后flink再从kafka消费数据,这种架构下我们需要部署多个组件,并且数据也需要落地到kafka,有没有更好的方案来精简下这个流程呢?我们接下来讲讲flink提供的cdc connector。
这个connector并没有包含在flink的代码里,具体的地址是在https://github.com/ververica/flink-cdc-connectors里,详情大家可以看下这里面的内容。
这种架构下,flink直接消费数据库的增量日志,替代了原来作为数据采集层的canal(debezium),然后直接进行计算,经过计算之后,将计算结果 发送到下游。整体架构如下:
使用这种架构是好处有:
减少canal和kafka的维护成本,链路更短,延迟更低
flink提供了exactly once语义
可以从指定position读取
去掉了kafka,减少了消息的存储成本
目前flink支持两种内置的connector,PostgreSQL和mysql,接下来我们以mysql为例简单讲讲。
在使用之前,我们需要引入相应的pom,mysql的pom如下:
com.alibaba.ververica
flink-connector-mysql-cdc
1.1.0
如果是sql客户端使用,需要下载 flink-sql-connector-mysql-cdc-1.1.0.jar 并且放到
连接mysql数据库的示例sql如下:
CREATE TABLE mysql_binlog (
id INT NOT NULL,
name STRING,
description STRING,
weight DECIMAL(10,3)
) WITH (
'connector' = 'mysql-cdc',
'hostname' = 'localhost',
'port' = '3306',
'username' = 'flinkuser',
'password' = 'flinkpw',
'database-name' = 'inventory',
'table-name' = 'products'
)
如果订阅的是postgres数据库,我们需要把connector替换成postgres-cdc,DDL中表的schema和数据库一一对应。
更加详细的配置参见:
https://github.com/ververica/flink-cdc-connectors/wiki/MySQL-CDC-Connector
接下来我们以mysql-cdc为例,看看源码层级是怎么实现的。既然作为一个sql的connector,那么就首先会有一个对应的TableFactory,然后在工厂类里面构造相应的source,最后将消费下来的数据转成flink认识的RowData格式,发送到下游。
我们按照这个思路来看看flink cdc源码的实现。
在flink-connector-mysql-cdc module中,找到其对应的工厂类:MySQLTableSourceFactory,进入createDynamicTableSource(Context context)方法,在这个方法里,使用从ddl中的属性里获取的host、dbname等信息构造了一个MySQLTableSource类。
在MySQLTableSource#getScanRuntimeProvider方法里,我们看到,首先构造了一个用于序列化的对象RowDataDebeziumDeserializeSchema,这个对象主要是用于将Debezium获取的SourceRecord格式的数据转化为flink认识的RowData对象。 我们看下RowDataDebeziumDeserializeSchem#deserialize方法,这里的操作主要就是先判断下进来的数据类型(insert 、update、delete),然后针对不同的类型(short、int等)分别进行转换,
最后我们看到用于flink用于获取数据库变更日志的Source函数是DebeziumSourceFunction,且最终返回的类型是RowData。
也就是说flink底层是采用了Debezium工具从mysql、postgres等数据库中获取的变更数据。
@SuppressWarnings("unchecked")
@Override
public ScanRuntimeProvider getScanRuntimeProvider(ScanContext scanContext) {
RowType rowType = (RowType) physicalSchema.toRowDataType().getLogicalType();
TypeInformation typeInfo = (TypeInformation) scanContext.createTypeInformation(physicalSchema.toRowDataType());
DebeziumDeserializationSchema deserializer = new RowDataDebeziumDeserializeSchema(
rowType,
typeInfo,
((rowData, rowKind) -> {}),
serverTimeZone);
MySQLSource.Builder builder = MySQLSource.builder()
.hostname(hostname)
..........
DebeziumSourceFunction sourceFunction = builder.build();
return SourceFunctionProvider.of(sourceFunction, false);
}
我们接下来看看DebeziumSourceFunction类
@PublicEvolving
public class DebeziumSourceFunction extends RichSourceFunction implements
CheckpointedFunction,
ResultTypeQueryable {
.............
}
我们看到DebeziumSourceFunction类继承了RichSourceFunction,并且实现了CheckpointedFunction接口,也就是说这个类是flink的一个SourceFunction,会从源端(run方法)获取数据,发送给下游。此外这个类还实现了CheckpointedFunction接口,也就是会通过checkpoint的机制来保证exactly once语义。
接下来我们进入run方法,看看是如何获取数据库的变更数据的。
@Override
public void run(SourceContext sourceContext) throws Exception {
...........................
// DO NOT include schema change, e.g. DDL
properties.setProperty("include.schema.changes", "false");
...........................
//将所有的属性信息打印出来,以便排查。
// dump the properties
String propsString = properties.entrySet().stream()
.map(t -> "\t" + t.getKey().toString() + " = " + t.getValue().toString() + "\n")
.collect(Collectors.joining());
LOG.info("Debezium Properties:\n{}", propsString);
//用于具体的处理数据的逻辑
this.debeziumConsumer = new DebeziumChangeConsumer<>(
sourceContext,
deserializer,
restoredOffsetState == null, // DB snapshot phase if restore state is null
this::reportError);
// create the engine with this configuration ...
this.engine = DebeziumEngine.create(Connect.class)
.using(properties)
.notifying(debeziumConsumer) // 数据发给上面的debeziumConsumer
.using((success, message, error) -> {
if (!success && error != null) {
this.reportError(error);
}
})
.build();
if (!running) {
return;
}
// run the engine asynchronously
executor.execute(engine);
//循环判断,当程序被打断,或者有错误的时候,打断engine,并且抛出异常
// on a clean exit, wait for the runner thread
try {
while (running) {
if (executor.awaitTermination(5, TimeUnit.SECONDS)) {
break;
}
if (error != null) {
running = false;
shutdownEngine();
// rethrow the error from Debezium consumer
ExceptionUtils.rethrow(error);
}
}
}
catch (InterruptedException e) {
// may be the result of a wake-up interruption after an exception.
// we ignore this here and only restore the interruption state
Thread.currentThread().interrupt();
}
}
在函数的开始,设置了很多的properties,比如include.schema.changes 设置为false,也就是不包含表的DDL操作,表结构的变更是不捕获的。我们这里只关注数据的增删改。
接下来构造了一个DebeziumChangeConsumer对象,这个类实现了DebeziumEngine.ChangeConsumer接口,主要就是将获取到的一批数据进行一条条的加工处理。
接下来定一个DebeziumEngine对象,这个对象是真正用来干活的,它的底层使用了kafka的connect-api来进行获取数据,得到的是一个org.apache.kafka.connect.source.SourceRecord对象。通过notifying方法将得到的数据交给上面定义的DebeziumChangeConsumer来来覆盖缺省实现以进行复杂的操作。
接下来通过一个线程池ExecutorService来异步的启动这个engine。
最后,做了一个循环判断,当程序被打断,或者有错误的时候,打断engine,并且抛出异常。
总结一下,就是在Flink的source函数里,使用Debezium 引擎获取对应的数据库变更数据(SourceRecord),经过一系列的反序列化操作,最终转成了flink中的RowData对象,发送给下游。
当我们从mysql-cdc获取数据库的变更数据,或者写了一个group by的查询的时候,这种结果数据都是不断变化的,我们如何将这些变化的数据发到只支持append mode的kafka队列呢?
于是flink提供了一种changelog format,其实我们非常简单的理解为,flink对进来的RowData数据进行了一层包装,然后加了一个数据的操作类型,包括以下几种 INSERT,DELETE, UPDATE_BEFORE,UPDATE_AFTER。这样当下游获取到这个数据的时候,就可以根据数据的类型来判断下如何对数据进行操作了。
比如我们的原始数据格式是这样的。
{"day":"2020-06-18","gmv":100}
经过changelog格式的加工之后,成为了下面的格式:
{"data":{"day":"2020-06-18","gmv":100},"op":"+I"}
也就是说changelog format对原生的格式进行了包装,添加了一个op字段,表示数据的操作类型,目前有以下几种:
+I:插入操作。
-U :更新之前的数据内容:
+U :更新之后的数据内容。
-D :删除操作。
使用的时候需要引入相应的pom
com.alibaba.ververica
flink-format-changelog-json
1.1.0
使用flink sql操作的方式如下:
CREATE TABLE kafka_gmv (
day_str STRING,
gmv DECIMAL(10, 5)
) WITH (
'connector' = 'kafka',
'topic' = 'kafka_gmv',
'scan.startup.mode' = 'earliest-offset',
'properties.bootstrap.servers' = 'localhost:9092',
'format' = 'changelog-json'
);
我们定义了一个 format 为 changelog-json 的kafka connector,之后我们就可以对其进行写入和查询了。
完整的代码和配置请参考:
https://github.com/ververica/flink-cdc-connectors/wiki/Changelog-JSON-Format
作为一种flink的format ,我们主要看下其序列化和发序列化方法,changelog-json 使用了flink-json包进行json的处理。
反序列化用的是ChangelogJsonDeserializationSchema类,在其构造方法里,我们看到主要是构造了一个json的序列化器jsonDeserializer用于对数据进行处理。
public ChangelogJsonDeserializationSchema(
RowType rowType,
TypeInformation resultTypeInfo,
boolean ignoreParseErrors,
TimestampFormat timestampFormatOption) {
this.resultTypeInfo = resultTypeInfo;
this.ignoreParseErrors = ignoreParseErrors;
this.jsonDeserializer = new JsonRowDataDeserializationSchema(
createJsonRowType(fromLogicalToDataType(rowType)),
// the result type is never used, so it's fine to pass in Debezium's result type
resultTypeInfo,
false, // ignoreParseErrors already contains the functionality of failOnMissingField
ignoreParseErrors,
timestampFormatOption);
}
其中createJsonRowType方法指定了changelog的format是一种Row类型的格式,我们看下代码:
private static RowType createJsonRowType(DataType databaseSchema) {
DataType payload = DataTypes.ROW(
DataTypes.FIELD("data", databaseSchema),
DataTypes.FIELD("op", DataTypes.STRING()));
return (RowType) payload.getLogicalType();
}
在这里,指定了这个row格式有两个字段,一个是data,表示数据的内容,一个是op,表示操作的类型。
最后看下最核心的ChangelogJsonDeserializationSchema#deserialize(byte[] bytes, Collector
@Override
public void deserialize(byte[] bytes, Collector out) throws IOException {
try {
GenericRowData row = (GenericRowData) jsonDeserializer.deserialize(bytes);
GenericRowData data = (GenericRowData) row.getField(0);
String op = row.getString(1).toString();
RowKind rowKind = parseRowKind(op);
data.setRowKind(rowKind);
out.collect(data);
} catch (Throwable t) {
// a big try catch to protect the processing.
if (!ignoreParseErrors) {
throw new IOException(format(
"Corrupt Debezium JSON message '%s'.", new String(bytes)), t);
}
}
}
使用jsonDeserializer对数据进行处理,然后对第二个字段op进行判断,添加对应的RowKind。
序列化的方法我们看下方法:ChangelogJsonSerializationSchema#serialize
@Override
public byte[] serialize(RowData rowData) {
reuse.setField(0, rowData);
reuse.setField(1, stringifyRowKind(rowData.getRowKind()));
return jsonSerializer.serialize(reuse);
}
这块没有什么难度,就是将flink的RowData使用jsonSerializer序列化成字节数组。
到此,相信大家对“flink sql cdc怎么使用”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流