加速,改成多线程转VOC矩形框和生成tfrecord-成都快上网建站

加速,改成多线程转VOC矩形框和生成tfrecord

改生成VOC2007矩形框:

成都创新互联公司是一家专业提供云龙企业网站建设,专注与网站设计制作、成都网站设计H5建站、小程序制作等业务。10年已为云龙众多企业、政府机构等服务。创新互联专业网站设计公司优惠进行中。

# -*- coding: utf-8 -*-

"""

Created on Thu Sep 19 14:51:00 2019

@author: Andrea

"""

import os

import numpy as np

import codecs

import json

from glob import glob

import cv2

import shutil

from sklearn.model_selection import train_test_split

import threading

#1.标签路径

labelme_path = "I:\\biaozhutuxiang\\fangdichan1106-banannanan" #原始labelme标注数据路径

saved_path = "I:\\biaozhutuxiang\\VOC2007-fangdichan1106-banannanan\\" #保存路径

#2.创建要求文件夹

if not os.path.exists(saved_path + "Annotations"):

os.makedirs(saved_path + "Annotations")

if not os.path.exists(saved_path + "JPEGImages/"):

os.makedirs(saved_path + "JPEGImages/")

if not os.path.exists(saved_path + "ImageSets/Main/"):

os.makedirs(saved_path + "ImageSets/Main/")

"""重新定义带返回值的线程类----民国档案------"""

class LoadThread(threading.Thread):

#class LoadThread_rep:

def __init__(self, json_file_):

super(LoadThread, self).__init__()

self.json_file_ = json_file_

def run(self):

if('.json' not in self.json_file_):

return self.json_file_

else:

json_file_ = self.json_file_.split('.json')[0]

print(json_file_)

json_filename = os.path.join(labelme_path , json_file_ + ".json")

print(json_filename)

json_file = json.load(open(json_filename,"r",encoding="utf-8"))

print(os.path.join(labelme_path , json_file_ +".jpg"))

height, width, channels = cv2.imread(os.path.join(labelme_path , json_file_ +".jpg")).shape

with codecs.open(saved_path + "Annotations/"+json_file_ + ".xml","w","utf-8") as xml:

xml.write('\n')

xml.write('\t' + 'UAV_data' + '\n')

xml.write('\t' + json_file_ + ".jpg" + '\n')

xml.write('\t\n')

xml.write('\t\tThe UAV autolanding\n')

xml.write('\t\tUAV AutoLanding\n')

xml.write('\t\tflickr\n')

xml.write('\t\tNULL\n')

xml.write('\t\n')

xml.write('\t\n')

xml.write('\t\tNULL\n')

xml.write('\t\tYuanyiqin\n')

xml.write('\t\n')

xml.write('\t\n')

xml.write('\t\t'+ str(width) + '\n')

xml.write('\t\t'+ str(height) + '\n')

xml.write('\t\t' + str(channels) + '\n')

xml.write('\t\n')

xml.write('\t\t0\n')

for multi in json_file["shapes"]:

points = np.array(multi["points"])

xmin = min(points[:,0])

xmax = max(points[:,0])

ymin = min(points[:,1])

ymax = max(points[:,1])

label = multi["label"]

if xmax <= xmin:

pass

elif ymax <= ymin:

pass

else:

xml.write('\t\n')

print(json_filename,xmin,ymin,xmax,ymax,label)

xml.write('')

self.json_file_

def get_result(self):

return self.json_file_

##3.获取待处理文件

#files = glob(labelme_path + "*.json")

#print(files)

#files = [i.split("/")[-1].split(".json")[0] for i in files]

#4.读取标注信息并写入 xml

threadnum = 64

if __name__ == '__main__':

# for json_file_ in os.listdir(labelme_path):

img_list = os.listdir(labelme_path)

img_length = len(img_list)

# threadnum = 4

for i in range(0,int(img_length/threadnum)+1):

# for i in range(int(img_length/threadnum)+1):

print('i,int(img_length/threadnum):',i,int(img_length/threadnum))

li = []

for j in range(i*threadnum,min(i*threadnum+threadnum,img_length)):

# for j in range(i*threadnum,min(i*threadnum+threadnum,img_length)):

json_file_ = img_list[j]

print('json_file_:',json_file_)

thread = LoadThread(json_file_)

li.append(thread)

thread.start()

for thread in li:

thread.join() # 一定要join,不然主线程比子线程跑的快,会拿不到结果

json_file_ = thread.get_result()

print('Down json_file_:',json_file_)

#5.复制图片到 VOC2007/JPEGImages/下

image_files = glob(labelme_path + "*.jpg")

print("copy image files to VOC007/JPEGImages/")

for image in image_files:

shutil.copy(image,saved_path +"JPEGImages/")

#6.split files for txt

txtsavepath = saved_path + "ImageSets/Main/"

ftrainval = open(txtsavepath+'/trainval.txt', 'w')

ftest = open(txtsavepath+'/test.txt', 'w')

ftrain = open(txtsavepath+'/train.txt', 'w')

fval = open(txtsavepath+'/val.txt', 'w')

total_files = glob("./VOC2007/Annotations/*.xml")

total_files = [i.split("/")[-1].split(".xml")[0] for i in total_files]

#test_filepath = ""

for file in total_files:

ftrainval.write(file + "\n")

#test

#for file in os.listdir(test_filepath):

# ftest.write(file.split(".jpg")[0] + "\n")

#split

train_files,val_files = train_test_split(total_files,test_size=0.15,random_state=42)

#train

for file in train_files:

ftrain.write(file + "\n")

#val

for file in val_files:

fval.write(file + "\n")

ftrainval.close()

ftrain.close()

fval.close()

#ftest.close()

改成多线程生成tfrecord:

# -*- coding: utf-8 -*-

from __future__ import division, print_function, absolute_import

import sys

sys.path.append('../../')

import xml.etree.cElementTree as ET

import numpy as np

import tensorflow as tf

import math

import glob

import cv2

from libs.label_name_dict.label_dict import *

from help_utils.tools import *

import threading

import random

tf.app.flags.DEFINE_string('VOC_dir', '/home/yuanyq/Detect_DL/FPN_Tensorflow/data/io/VOC2007/', 'Voc dir')

tf.app.flags.DEFINE_string('xml_dir', 'Annotations', 'xml dir')

tf.app.flags.DEFINE_string('image_dir', 'JPEGImages', 'image dir')

tf.app.flags.DEFINE_string('save_name', 'train', 'save name')

tf.app.flags.DEFINE_string('save_dir', '../tfrecord/', 'save name')

tf.app.flags.DEFINE_string('img_format', '.jpg', 'format of image')

tf.app.flags.DEFINE_string('dataset', 'pascal', 'dataset')

FLAGS = tf.app.flags.FLAGS

threadnum = 128

global count

count = 0

class LoadThread(threading.Thread):

def __init__(self,xml,image_path,xml_path,writer):

super(LoadThread,self).__init__()

self.xml = xml

self.image_path = image_path

self.xml_path = xml_path

self.writer = writer

def run(self):

# to avoid path error in different development platform

xml = self.xml.replace('\\', '/')

img_name = xml.split('/')[-1].split('.')[0] + FLAGS.img_format

img_path = self.image_path + '/' + img_name

print('xml:',xml)

if not os.path.exists(img_path):

print('{} is not exist!'.format(img_path))

#return self.xml

img_height, img_width, gtbox_label = read_xml_gtbox_and_label(xml)

# img = np.array(Image.open(img_path))

img = cv2.imread(img_path)[:, :, ::-1]

feature = tf.train.Features(feature={

# do not need encode() in linux

'img_name': _bytes_feature(img_name.encode()),

# 'img_name': _bytes_feature(img_name),

'img_height': _int64_feature(img_height),

'img_width': _int64_feature(img_width),

'img': _bytes_feature(img.tostring()),

'gtboxes_and_label': _bytes_feature(gtbox_label.tostring()),

'num_objects': _int64_feature(gtbox_label.shape[0])

})郑州妇科医院 http://www.120zzzy.com/

example = tf.train.Example(features=feature)

self.writer.write(example.SerializeToString())

#view_bar('Conversion progress', count + 1, len(glob.glob(self.xml_path + '/*.xml')))

return self.xml

def get_result(self):

print(self.xml)

return self.xml

def _int64_feature(value):

return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def _bytes_feature(value):

return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def read_xml_gtbox_and_label(xml_path):

"""

:param xml_path: the path of voc xml

:return: a list contains gtboxes and labels, shape is [num_of_gtboxes, 5],

and has [xmin, ymin, xmax, ymax, label] in a per row

"""

tree = ET.parse(xml_path)

root = tree.getroot()

img_width = None

img_height = None

box_list = []

for child_of_root in root:

# if child_of_root.tag == 'filename':

# assert child_of_root.text == xml_path.split('/')[-1].split('.')[0] \

# + FLAGS.img_format, 'xml_name and img_name cannot match'

if child_of_root.tag == 'size':

for child_item in child_of_root:

if child_item.tag == 'width':

img_width = int(child_item.text)

if child_item.tag == 'height':

img_height = int(child_item.text)

if child_of_root.tag == 'object':

label = None

for child_item in child_of_root:

# print('child_item.tag:',child_item.tag)

# print('child_item.text:',child_item.text)

# print('NAME_LABEL_MAP:',NAME_LABEL_MAP)

if child_item.tag == 'name':

if(child_item.text == '0002X'):

child_item.text = '0002'

if(child_item.text == 'X0002'):

child_item.text = '0002'

if(child_item.text =='000Z1'):

child_item.text = '0001'

if(child_item.text =='A0001'):

child_item.text = '0001'

if(child_item.text =='c0002'):

child_item.text = '0002'

if(child_item.text !='0001' and child_item.text !='0002' and child_item.text !='0003'):

label = 1

else:

label = NAME_LABEL_MAP[child_item.text]

if child_item.tag == 'bndbox':

tmp_box = []

for node in child_item:

tmp_box.append(math.ceil(float(node.text)))

assert label is not None, 'label is none, error'

tmp_box.append(label)

box_list.append(tmp_box)

gtbox_label = np.array(box_list, dtype=np.int32)

return img_height, img_width, gtbox_label

def convert_pascal_to_tfrecord():

xml_path = FLAGS.VOC_dir + FLAGS.xml_dir

image_path = FLAGS.VOC_dir + FLAGS.image_dir

save_path = FLAGS.save_dir + FLAGS.dataset + '_' + FLAGS.save_name + '.tfrecord'

mkdir(FLAGS.save_dir)

# print('xml_path:',xml_path)

# print('save_path:',save_path)

# print('image_path:',image_path)

# writer_options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.ZLIB)

# writer = tf.python_io.TFRecordWriter(path=save_path, options=writer_options)

writer = tf.python_io.TFRecordWriter(path=save_path)

img_list = os.listdir(xml_path)

random.shuffle(img_list)

img_length = len(img_list)

for i in range(0,int(img_length/threadnum)+1):

li = []

for j in range(i*threadnum,min(i*threadnum+threadnum,img_length)):

xml = os.path.join(xml_path,img_list[j])

thread = LoadThread(xml,image_path,xml_path,writer)

thread.daemon = True

li.append(thread)

thread.start()

for thread in li:

thread.join() # 一定要join,不然主线程比子线程跑的快,会拿不到结果

xml = thread.get_result()

print('img_name done:',xml)

# to avoid path error in different development platform

print('\nConversion is complete!')

if __name__ == '__main__':

# xml_path = '../data/dataset/VOCdevkit/VOC2007/Annotations/000005.xml'

# read_xml_gtbox_and_label(xml_path)

convert_pascal_to_tfrecord()


网页题目:加速,改成多线程转VOC矩形框和生成tfrecord
文章网址:http://kswjz.com/article/ihihhs.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流