扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
在java项目中实现一个树形选择排序?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
创新互联建站专业为企业提供河间网站建设、河间做网站、河间网站设计、河间网站制作等企业网站建设、网页设计与制作、河间企业网站模板建站服务,10余年河间做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。
树形选择排序:又称锦标赛排序(Tournament Sort),是一种按照锦标赛的思想进行选择排序的方法。首先对n个记录的关键字进行两两比较,然后在n/2个较小者之间再进行两两比较,如此重复,直至选出最小的记录为止。
算法实现代码如下:
package exp_sort; public class TreeSelectSort { public static int[] TreeSelectionSort(int[] mData) { int TreeLong = mData.length * 4; int MinValue = -10000; int[] tree = new int[TreeLong]; // 树的大小 int baseSize; int i; int n = mData.length; int max; int maxIndex; int treeSize; baseSize = 1; while (baseSize < n) { baseSize *= 2; } treeSize = baseSize * 2 - 1; for (i = 0; i < n; i++) { tree[treeSize - i] = mData[i]; } for (; i < baseSize; i++) { tree[treeSize - i] = MinValue; } // 构造一棵树 for (i = treeSize; i > 1; i -= 2) { tree[i / 2] = (tree[i] > tree[i - 1] ? tree[i] : tree[i - 1]); } n -= 1; while (n != -1) { max = tree[1]; mData[n--] = max; maxIndex = treeSize; while (tree[maxIndex] != max) { maxIndex--; } tree[maxIndex] = MinValue; while (maxIndex > 1) { if (maxIndex % 2 == 0) { tree[maxIndex / 2] = (tree[maxIndex] > tree[maxIndex + 1] ? tree[maxIndex] : tree[maxIndex + 1]); } else { tree[maxIndex / 2] = (tree[maxIndex] > tree[maxIndex - 1] ? tree[maxIndex] : tree[maxIndex - 1]); } maxIndex /= 2; } } return mData; } public static void main(String[] args) { // TODO Auto-generated method stub int array[] = { 38, 62, 35, 77, 55, 14, 35, 98 }; TreeSelectionSort(array); for (int i = 0; i < array.length; i++) { System.out.print(array[i] + " "); } System.out.println("\n"); } }
算法分析:
在树形选择排序中,除了最小的关键字,被选出的最小关键字都是走了一条由叶子结点到跟节点的比较过程,由于含有n个叶子结点的完全二叉树的深度log2n+1,因此在树形选择排序中,每选出一个较小关键字需要进行log2n次比较,所以其时间复杂度是O(nlog2n),移动记录次数不超过比较次数,故总的算法时间复杂度为O(nlog2n),与简单选择排序算法相比,降低了比较次数的数量级,增加了n-1个额外的存储空间存放中间比较结果。
补充:
这里再来介绍对树形选择排序的改进算法,即堆排序算法。
堆排序弥补了树形选择排序算法占用空间多的缺憾。采用堆排序时,只需要一个记录大小的辅助空间。
算法思想是:
把待排序记录的关键字存放在数组r[1...n]中,将r看成是一棵完全二叉树的顺序表示,每个结点表示一个记录,第一个记录r[1]作为二叉树的根,以下每个记录r[2...n]依次逐层从左到右顺序排列,任意结点r[i]的左孩子是r[2*i],右孩子是r[2*i+1];双亲是r[[i/2]]。
堆定义:各结点的关键字值满足下列条件:
r[i].key >= r[2i].key 且 r[i].key >= r[2i+1].key (i=1,2,……[i/2])
满足上面条件的完全二叉树称为大根堆;相反,如果这颗完全二叉树中任意结点的关键字小于或者等于其左孩子和右孩子的关键字,对应的堆叫做小根堆。
堆排序的过程主要需要解决两个问题:第一个是,按照堆定义建初堆;第二个是,去掉最大元后重建堆,得到次大元。
堆排序即是利用堆的特性对记录序列进行排序,过程如下:
1、对给定序列建堆;
2、输出堆顶;(首元素与尾元素交换)
3、对剩余元素重建堆;(筛选首元素)
4、重复2,3,直至所有元素输出。
注意:“筛选”须从第[n/2]个结点开始,逐层向上倒退,直到根结点。
算法分析:
1. 对深度为 k 的堆,“筛选”所需进行的关键字比较的次数至多为2(k-1);
2. n 个关键字的堆深度为 [log2n]+1, 初建堆所需进行的关键字比较的次数至多为:n* [log2n];
3. 重建堆 n-1 次,所需进行的关键字比较的次数不超过:(n-1)*2 [log2n ];
因此,堆排序在最坏情况下,其时间复杂度为O(nlog2n),这是堆排序的最大优点。
看完上述内容,你们掌握在java项目中实现一个树形选择排序的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流