(版本定制)第16课:SparkStreaming源码解读之数据清理内幕彻底解密-成都快上网建站

(版本定制)第16课:SparkStreaming源码解读之数据清理内幕彻底解密

本期内容:

创新互联建站是一家专注于网站设计制作、网站设计与策划设计,呼中网站建设哪家好?创新互联建站做网站,专注于网站建设十多年,网设计领域的专业建站公司;建站业务涵盖:呼中等地区。呼中做网站价格咨询:18980820575

    1、Spark Streaming元数据清理详解

    2、Spark Streaming元数据清理源码解析

一、如何研究Spark Streaming元数据清理

  1. 操作DStream的时候会产生元数据,所以要解决RDD的数据清理工作就一定要从DStream入手。因为DStream是RDD的模板,DStream之间有依赖关系。 
    DStream的操作产生了RDD,接收数据也靠DStream,数据的输入,数据的计算,输出整个生命周期都是由DStream构建的。由此,DStream负责RDD的整个生命周期。因此研究的入口的是DStream。

  2. 基于Kafka数据来源,通过Direct的方式访问Kafka,DStream随着时间的进行,会不断的在自己的内存数据结构中维护一个HashMap,HashMap维护的就是时间窗口,以及时间窗口下的RDD.按照Batch Duration来存储RDD以及删除RDD.

  3. Spark Streaming本身是一直在运行的,在自己计算的时候会不断的产生RDD,例如每秒Batch Duration都会产生RDD,除此之外可能还有累加器,广播变量。由于不断的产生这些对象,因此Spark Streaming有自己的一套对象,元数据以及数据的清理机制。

  4. Spark Streaming对RDD的管理就相当于JVM的GC

二、源码解析

Spark Streaming是通过我们设定的Batch Durations来不断的产生RDD,Spark Streaming清理元数据跟时钟有关,因为数据是周期性的产生,所以肯定是周期性的释放,这些都跟JobGenerator有关,所以我们先从这开始研究。

1、RecurringTimer: 消息循环器将消息不断的发送给EventLoop

= RecurringTimer(...millisecondslongTime => .post((Time(longTime))))

2、eventLoop:onReceive接收到消息

(): = synchronized {
(!= ) = EventLoop[JobGeneratorEvent]() {
(event: JobGeneratorEvent): = processEvent(event)

(e: ): = {
      jobScheduler.reportError(e)
    }
  }
.start()

(.) {
    restart()
  } {
    startFirstTime()
  }
}

3、在processEvent中接收清理元数据消息

/** Processes all events */
private def processEvent(event: JobGeneratorEvent) {
  logDebug("Got event " + event)
  event match {
case GenerateJobs(time) => generateJobs(time)
case ClearMetadata(time) => clearMetadata(time) //清理元数据
case DoCheckpoint(time, clearCheckpointDataLater) =>
      doCheckpoint(time, clearCheckpointDataLater)
case ClearCheckpointData(time) => clearCheckpointData(time) //清理checkpoint
  }
}

具体的方法实现内容就不再这里说,我们进一步分析下这些清理动作是在什么时候被调用的,在Spark Streaming应用程序中,最终Job是交给JobHandler来执行的,所以我们分析下JobHandler

private class JobHandler(job: Job) extends Runnable with Logging {
import JobScheduler._

def run() {
try {
val formattedTime = UIUtils.formatBatchTime(
          job.time.milliseconds, ssc.graph.batchDuration.milliseconds, showYYYYMMSS = false)
val batchUrl = s"/streaming/batch/?id=${job.time.milliseconds}"
val batchLinkText = s"[output operation ${job.outputOpId}, batch time ${formattedTime}]"

ssc.sc.setJobDescription(
s"""Streaming job from $batchLinkText""")
        ssc.sc.setLocalProperty(BATCH_TIME_PROPERTY_KEY, job.time.milliseconds.toString)
        ssc.sc.setLocalProperty(OUTPUT_OP_ID_PROPERTY_KEY, job.outputOpId.toString)

// We need to assign `eventLoop` to a temp variable. Otherwise, because
        // `JobScheduler.stop(false)` may set `eventLoop` to null when this method is running, then
        // it's possible that when `post` is called, `eventLoop` happens to null.
var _eventLoop = eventLoop
if (_eventLoop != null) {
          _eventLoop.post(JobStarted(job, clock.getTimeMillis()))
// Disable checks for existing output directories in jobs launched by the streaming
          // scheduler, since we may need to write output to an existing directory during checkpoint
          // recovery; see SPARK-4835 for more details.
PairRDDFunctions.disableOutputSpecValidation.withValue(true) {
            job.run()
          }
          _eventLoop = eventLoop
if (_eventLoop != null) {
_eventLoop.post(JobCompleted(job, clock.getTimeMillis()))
          }
        } else {
// JobScheduler has been stopped.
}
      } finally {
        ssc.sc.setLocalProperty(JobScheduler.BATCH_TIME_PROPERTY_KEY, null)
        ssc.sc.setLocalProperty(JobScheduler.OUTPUT_OP_ID_PROPERTY_KEY, null)
      }
    }
  }
}

当Job完成的时候,会发JobCompleted消息给onReceive,通过processEvent来执行具体的方法

private def processEvent(event: JobSchedulerEvent) {
try {
    event match {
case JobStarted(job, startTime) => handleJobStart(job, startTime)
case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime)
case ErrorReported(m, e) => handleError(m, e)
    }
  } catch {
case e: Throwable =>
      reportError("Error in job scheduler", e)
  }
}
private def handleJobCompletion(job: Job, completedTime: Long) {
val jobSet = jobSets.get(job.time)
  jobSet.handleJobCompletion(job)
  job.setEndTime(completedTime)
listenerBus.post(StreamingListenerOutputOperationCompleted(job.toOutputOperationInfo))
  logInfo("Finished job " + job.id + " from job set of time " + jobSet.time)
if (jobSet.hasCompleted) {
jobSets.remove(jobSet.time)
jobGenerator.onBatchCompletion(jobSet.time)
    logInfo("Total delay: %.3f s for time %s (execution: %.3f s)".format(
      jobSet.totalDelay / 1000.0, jobSet.time.toString,
jobSet.processingDelay / 1000.0
))
listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo))
  }
  job.result match {
case Failure(e) =>
      reportError("Error running job " + job, e)
case _ =>
  }
}

通过jobGenerator.onBatchCompletion来清理元数据

/**
 * Callback called when a batch has been completely processed.
 */
def onBatchCompletion(time: Time) {
eventLoop.post(ClearMetadata(time))
}

到这里Spark Streaming清理元数据的步骤基本上完成了


分享文章:(版本定制)第16课:SparkStreaming源码解读之数据清理内幕彻底解密
网站路径:http://kswjz.com/article/ighjdp.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流