包含python函数next的词条-成都快上网建站

包含python函数next的词条

python常用函数

1、complex()

创新互联,专注为中小企业提供官网建设、营销型网站制作、响应式网站开发、展示型成都网站建设、网站设计等服务,帮助中小企业通过网站体现价值、有效益。帮助企业快速建站、解决网站建设与网站营销推广问题。

返回一个形如 a+bj 的复数,传入参数分为三种情况:

参数为空时,返回0j;参数为字符串时,将字符串表达式解释为复数形式并返回;参数为两个整数(a,b)时,返回 a+bj;参数只有一个整数 a 时,虚部 b 默认为0,函数返回 a+0j。

2、dir()

不提供参数时,返回当前本地范围内的名称列表;提供一个参数时,返回该对象包含的全部属性。

3、divmod(a,b)

a -- 代表被除数,整数或浮点数;b -- 代表除数,整数或浮点数;根据 除法运算 计算 a,b 之间的商和余数,函数返回一个元组(p,q) ,p 代表商 a//b ,q 代表余数 a%b。

4、enumerate(iterable,start=0)

iterable -- 一个可迭代对象,列表、元组序列等;start -- 计数索引值,默认初始为0‘该函数返回枚举对象是个迭代器,利用 next() 方法依次返回元素值,每个元素以元组形式存在,包含一个计数元素(起始为 start )和 iterable 中对应的元素值。

Python中的“迭代”详解

迭代器模式:一种惰性获取数据项的方式,即按需一次获取一个数据项。

所有序列都是可以迭代的。我们接下来要实现一个 Sentence(句子)类,我们向这个类的构造方法传入包含一些文本的字符串,然后可以逐个单词迭代。

接下来测试 Sentence 实例能否迭代

序列可以迭代的原因:

iter()

解释器需要迭代对象 x 时,会自动调用iter(x)。

内置的 iter 函数有以下作用:

由于序列都实现了 __getitem__ 方法,所以都可以迭代。

可迭代对象:使用内置函数 iter() 可以获取迭代器的对象。

与迭代器的关系:Python 从可迭代对象中获取迭代器。

下面用for循环迭代一个字符串,这里字符串 'abc' 是可迭代的对象,用 for 循环迭代时是有生成器,只是 Python 隐藏了。

如果没有 for 语句,使用 while 循环模拟,要写成下面这样:

Python 内部会处理 for 循环和其他迭代上下文(如列表推导,元组拆包等等)中的 StopIteration 异常。

标准的迭代器接口有两个方法:

__next__ :返回下一个可用的元素,如果没有元素了,抛出 StopIteration 异常。

__iter__ :返回 self,以便在需要使用可迭代对象的地方使用迭代器,如 for 循环中。

迭代器:实现了无参数的 __next__ 方法,返回序列中的下一个元素;如果没有元素了,那么抛出 StopIteration 异常。Python 中的迭代器还实现了 __iter__ 方法,因此迭代器也可以迭代。

接下来使用迭代器模式实现 Sentence 类:

注意, 不要 在 Sentence 类中实现 __next__ 方法,让 Sentence 实例既是可迭代对象,也是自身的迭代器。

为了“支持多种遍历”,必须能从同一个可迭代的实例中获取多个独立的迭代器,而且各个迭代器要能维护自身的内部状态,因此这一模式正确的实现方式是,每次调用 iter(my_iterable) 都新建一个独立的迭代器。

所以总结下来就是:

实现相同功能,但却符合 Python 习惯的方式是,用生成器函数代替 SentenceIteror 类。

只要 Python 函数的定义体中有 yield 关键字,该函数就是生成器函数。调用生成器函数,就会返回一个生成器对象。

生成器函数会创建一个生成器对象,包装生成器函数的定义体,把生成器传给 next(...) 函数时,生成器函数会向前,执行函数定义体中的下一个 yield 语句,返回产出的值,并在函数定义体的当前位置暂停,。最终,函数的定义体返回时,外层的生成器对象会抛出 StopIteration 异常,这一点与迭代器协议一致。

如今这一版 Sentence 类相较之前简短多了,但是还不够慵懒。 惰性 ,是如今人们认为最好的特质。惰性实现是指尽可能延后生成值,这样做能节省内存,或许还能避免做无用的处理。

目前实现的几版 Sentence 类都不具有惰性,因为 __init__ 方法急迫的构建好了文本中的单词列表,然后将其绑定到 self.words 属性上。这样就得处理整个文本,列表使用的内存量可能与文本本身一样多(或许更多,取决于文本中有多少非单词字符)。

re.finditer 函数是 re.findall 函数的惰性版本,返回的是一个生成器,按需生成 re.MatchObject 实例。我们可以使用这个函数来让 Sentence 类变得懒惰,即只在需要时才生成下一个单词。

标准库提供了很多生成器函数,有用于逐行迭代纯文本文件的对象,还有出色的 os.walk 函数等等。本节专注于通用的函数:参数为任意的可迭代对象,返回值是生成器,用于生成选中的、计算出的和重新排列的元素。

第一组是用于 过滤 的生成器函数:从输入的可迭代对象中产出元素的子集,而且不修改元素本身。这种函数大多数都接受一个断言参数(predicate),这个参数是个 布尔函数 ,有一个参数,会应用到输入中的每个元素上,用于判断元素是否包含在输出中。

以下为这些函数的演示:

第二组是用于映射的生成器函数:在输入的单个/多个可迭代对象中的各个元素上做计算,然后返回结果。

以下为这些函数的用法:

第三组是用于合并的生成器函数,这些函数都可以从输入的多个可迭代对象中产出元素。

以下为演示:

第四组是从一个元素中产出多个值,扩展输入的可迭代对象。

以下为演示:

第五组生成器函数用于产出输入的可迭代对象中的全部元素,不过会以某种方式重新排列。

下面的函数都接受一个可迭代的对象,然后返回单个结果,这种函数叫“归约函数”,“合拢函数”或“累加函数”,其实,这些内置函数都可以用 functools.reduce 函数实现,但内置更加方便,而且还有一些优点。

参考教程:

《流畅的python》 P330 - 363

闲话python 45: 浅谈生成器yield

生成器似乎并不是一个经常被开发者讨论的语法,因此也就没有它的大兄弟迭代器那么著名。大家不讨论它并不是说大家都已经对它熟悉到人尽皆知,与之相反,即使是工作多年的开发者可能对生成器的运行过程还是知之甚少。这是什么原因导致的呢?我猜想大概有以下几点原因: (1)运行流程不同寻常,(2)日常开发不需要,(3)常常将生成器与迭代器混淆。 生成器的运行流程可以按照协程来理解,也就是说 返回中间结果,断点继续运行 。这与我们通常对于程序调用的理解稍有差异。这种运行模式是针对什么样的需求呢? 一般而言,生成器是应用于大量磁盘资源的处理。 比如一个很大的文件,每次读取一行,下一次读取需要以上一次读取的位置为基础。下面就通过代码演示具体看看生成器的运行机制、使用方式以及与迭代器的比较。

什么是生成器?直接用文字描述可能太过抽象,倒不如先运行一段代码,分析这段代码的运行流程,然后总结出自己对生成器的理解。

从以上演示可以看出,这段代码定义了一个函数,这个函数除了yield这个关键字之外与一般函数并没有差异,也就是说生成器的魔法都是这个yield关键字引起的。 第一点,函数的返回值是一个生成器对象。 上述代码中,直接调用这个看似普通的函数,然后将返回值打印出来,发现返回值是一个对象,而并不是普通函数的返回值。 第二点,可以使用next对这个生成器对象进行操作 。生成器对象天然的可以被next函数调用,然后返回在yield关键字后面的内容。 第三,再次调用next函数处理生成器对象,发现是从上次yield语句之后继续运行,直到下一个yield语句返回。

生成器的运行流程确实诡异,下面还要演示一个生成器可以执行的更加诡异的操作:运行过程中向函数传参。

返回生成器和next函数操作生成器已经并不奇怪了,但是在函数运行过程中向其传参还是让人惊呆了。 调用生成器的send函数传入参数,在函数内使用yield语句的返回值接收,然后继续运行直到下一个yield语句返回。 以前实现这种运行流程的方式是在函数中加上一个从控制台获取数据的指令,或者提前将参数传入,但是现在不用了,send方式使得传入的参数可以随着读取到的参数变化而变化。

很多的开发者比较容易混淆生成器和迭代器,而迭代器的运行过程更加符合一般的程序调用运行流程,因此从亲进度和使用熟悉度而言,大家对迭代器更有好感。比如下面演示一个对迭代器使用next方法进行操作。

从以上演示来看,大家或许会认为迭代器比生成器简单易用得太多了。不过,如果你了解迭代器的实现机制,可能就不会这么早下结论了。python内置了一些已经实现了的迭代器使用确实方便,但是如果需要自己去写一个迭代器呢?下面这段代码就带大家见识以下迭代器的实现。

在python中,能被next函数操作的对象一定带有__next__函数的实现,而能够被迭代的对象有必须实现__iter__函数。看了这么一段操作,相信大家对迭代器实现的繁琐也是深有体会了,那么生成器的实现是不是会让你觉得更加简单易用呢?不过千万别产生一个误区,即生成器比迭代器简单就多用生成器。 在实际开发中,如果遇到与大量磁盘文件或者数据库操作相关的倒是可以使用生成器。但是在其他的任务中使用生成器难免有炫技,并且使逻辑不清晰而导致可读性下降的嫌疑。 这大概也能解释生成器受冷落的原因。不过作为一个专业的开发者,熟悉语言特性是分内之事。

到此,关于生成器的讨论就结束了。本文的notebook版本文件在github上的cnbluegeek/notebook仓库中共享,欢迎感兴趣的朋友前往下载。

python中的迭代器有什么用

什么是迭代

可以直接作用于for循环的对象统称为可迭代对象(Iterable)。

可以被next()函数调用并不断返回下一个值的对象称为迭代器(Iterator)。

所有的Iterable均可以通过内置函数iter()来转变为Iterator。

对迭代器来讲,有一个__next ()就够了。在你使用for 和 in 语句时,程序就会自动调用即将被处理的对象的迭代器对象,然后使用它的 next__()方法,直到监测到一个StopIteration异常。

L = [1,2,3] [x**2 for x in L] [1, 4, 9] next(L) Traceback (most recent call last): File "stdin", line 1, in module TypeError: 'list' object is not an iterator I=iter(L) next(I) 1 next(I) 2 next(I) 3 next(I) Traceback (most recent call last): File "stdin", line 1, in module StopIteration

上面例子中,列表L可以被for进行循环但是不能被内置函数next()用来查找下一个值,所以L是Iterable。L通过iter进行包装后设为I,I可以被next()用来查找下一个值,所以I是Iterator。

Python中seek和next区别

seek是移动索引的函数,默认是从开始,即0模式的

前两个好理解,最后一个也不难,打开文件的时候,文件时一片干净的缓冲区,所以充塞了null字符,就是\x00,你索引移动10格,自然是跳过了10个null字符,所以前面有10个\x00了

python class 内的 next(),last(),set() 写法

class Schedule(calender):

def __init__(self, date, usage, owner):

self.usage = usage

self.owner = owner

# 保存所有的日期

self._list = [date, ]

self.current = date

def add(self, date):

self._list.append(date)

# 假定date对象是支持比较的

self._list.sort()

def set(self, date):

if date not in self._list:

self.add(date)

self.current = date

def next(self):

index = self._list.index(self.current) + 1

if index = len(self._list):

print "no next"

else:

return self._list[index]

last类似,略


网页标题:包含python函数next的词条
文章分享:http://kswjz.com/article/hsicoc.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流