扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
一般来说predict函数都是要import一些机器学习算法库后用于建模后预测用的。比如说sklearn库里面的回归,分类,聚类等等都是有对应predict函数的。
站在用户的角度思考问题,与客户深入沟通,找到朝阳网站设计与朝阳网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都做网站、成都网站建设、企业官网、英文网站、手机端网站、网站推广、域名申请、网络空间、企业邮箱。业务覆盖朝阳地区。
举个最简单的例子:
线性回归的函数可以在C:\Python27\Lib\site-packages\sklearn\linear_model文件夹中找到。脚本名为base.py,predict()在187行就有。
线性回归:
设x,y分别为一组数据,代码如下
import matplotlib.pyplot as plt
import numpy as np
ro=np.polyfit(x,y,deg=1) #deg为拟合的多项式的次数(线性回归就选1)
ry=np.polyval(ro,x) #忘记x和ro哪个在前哪个在后了。。。
print ro #输出的第一个数是斜率k,第二个数是纵截距b
plt.scatter(x,y)
plt.plot(x,ry)
线性回归是机器学习算法中最简单的算法之一,它是监督学习的一种算法,主要思想是在给定训练集上学习得到一个线性函数,在损失函数的约束下,求解相关系数,最终在测试集上测试模型的回归效果。
也就是说 LinearRegression 模型会构造一个线性回归公式
y' = w^T x + b
,其中 w 和 x 均为向量,w 就是系数,截距是 b,得分是根据真实的 y 值和预测值 y' 计算得到的。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流