关于go语言对空格敏感吗的信息-成都快上网建站

关于go语言对空格敏感吗的信息

没有类,C语言有结构体,那么Go的结构体有什么特别之处?

Go语言中没有“类”的概念,也不支持“类”的继承等面向对象的概念。Go语言中通过结构体的内嵌再配合接口比面向对象具有更高的扩展性和灵活性。

成都创新互联致力于成都做网站、成都网站制作、成都外贸网站建设,成都网站设计,集团网站建设等服务标准化,推过标准化降低中小企业的建站的成本,并持续提升建站的定制化服务水平进行质量交付,让企业网站从市场竞争中脱颖而出。 选择成都创新互联,就选择了安全、稳定、美观的网站建设服务!

自定义类型

在Go语言中有一些基本的数据类型,如string、整型、浮点型、布尔等数据类型, Go语言中可以使用type关键字来定义自定义类型。

自定义类型是定义了一个全新的类型。我们可以基于内置的基本类型定义,也可以通过struct定义。例如:

通过Type关键字的定义,MyInt就是一种新的类型,它具有int的特性。

类型别名

类型别名是Go1.9版本添加的新功能。

类型别名规定:TypeAlias只是Type的别名,本质上TypeAlias与Type是同一个类型。就像一个孩子小时候有小名、乳名,上学后用学名,英语老师又会给他起英文名,但这些名字都指的是他本人。

type TypeAlias = Type

我们之前见过的rune和byte就是类型别名,他们的定义如下:

类型定义和类型别名的区别

类型别名与类型定义表面上看只有一个等号的差异,我们通过下面的这段代码来理解它们之间的区别。

结果显示a的类型是main.NewInt,表示main包下定义的NewInt类型。b的类型是int。MyInt类型只会在代码中存在,编译完成时并不会有MyInt类型。

Go语言中的基础数据类型可以表示一些事物的基本属性,但是当我们想表达一个事物的全部或部分属性时,这时候再用单一的基本数据类型明显就无法满足需求了,Go语言提供了一种自定义数据类型,可以封装多个基本数据类型,这种数据类型叫结构体,英文名称struct。 也就是我们可以通过struct来定义自己的类型了。

Go语言中通过struct来实现面向对象。

结构体的定义

使用type和struct关键字来定义结构体,具体代码格式如下:

其中:

举个例子,我们定义一个Person(人)结构体,代码如下:

同样类型的字段也可以写在一行,

这样我们就拥有了一个person的自定义类型,它有name、city、age三个字段,分别表示姓名、城市和年龄。这样我们使用这个person结构体就能够很方便的在程序中表示和存储人信息了。

语言内置的基础数据类型是用来描述一个值的,而结构体是用来描述一组值的。比如一个人有名字、年龄和居住城市等,本质上是一种聚合型的数据类型

结构体实例化

只有当结构体实例化时,才会真正地分配内存。也就是必须实例化后才能使用结构体的字段。

基本实例化

举个例子:

我们通过.来访问结构体的字段(成员变量),例如p1.name和p1.age等。

匿名结构体

在定义一些临时数据结构等场景下还可以使用匿名结构体。

创建指针类型结构体

我们还可以通过使用new关键字对结构体进行实例化,得到的是结构体的地址。 格式如下:

从打印的结果中我们可以看出p2是一个结构体指针。

需要注意的是在Go语言中支持对结构体指针直接使用.来访问结构体的成员。

取结构体的地址实例化

使用对结构体进行取地址操作相当于对该结构体类型进行了一次new实例化操作。

p3.name = "七米"其实在底层是(*p3).name = "七米",这是Go语言帮我们实现的语法糖。

结构体初始化

没有初始化的结构体,其成员变量都是对应其类型的零值。

使用键值对初始化

使用键值对对结构体进行初始化时,键对应结构体的字段,值对应该字段的初始值。

也可以对结构体指针进行键值对初始化,例如:

当某些字段没有初始值的时候,该字段可以不写。此时,没有指定初始值的字段的值就是该字段类型的零值。

使用值的列表初始化

初始化结构体的时候可以简写,也就是初始化的时候不写键,直接写值:

使用这种格式初始化时,需要注意:

结构体内存布局

结构体占用一块连续的内存。

输出:

【进阶知识点】关于Go语言中的内存对齐推荐阅读:在 Go 中恰到好处的内存对齐

面试题

请问下面代码的执行结果是什么?

构造函数

Go语言的结构体没有构造函数,我们可以自己实现。 例如,下方的代码就实现了一个person的构造函数。 因为struct是值类型,如果结构体比较复杂的话,值拷贝性能开销会比较大,所以该构造函数返回的是结构体指针类型。

调用构造函数

方法和接收者

Go语言中的方法(Method)是一种作用于特定类型变量的函数。这种特定类型变量叫做接收者(Receiver)。接收者的概念就类似于其他语言中的this或者 self。

方法的定义格式如下:

其中,

举个例子:

方法与函数的区别是,函数不属于任何类型,方法属于特定的类型。

指针类型的接收者

指针类型的接收者由一个结构体的指针组成,由于指针的特性,调用方法时修改接收者指针的任意成员变量,在方法结束后,修改都是有效的。这种方式就十分接近于其他语言中面向对象中的this或者self。 例如我们为Person添加一个SetAge方法,来修改实例变量的年龄。

调用该方法:

值类型的接收者

当方法作用于值类型接收者时,Go语言会在代码运行时将接收者的值复制一份。在值类型接收者的方法中可以获取接收者的成员值,但修改操作只是针对副本,无法修改接收者变量本身。

什么时候应该使用指针类型接收者

任意类型添加方法

在Go语言中,接收者的类型可以是任何类型,不仅仅是结构体,任何类型都可以拥有方法。 举个例子,我们基于内置的int类型使用type关键字可以定义新的自定义类型,然后为我们的自定义类型添加方法。

注意事项: 非本地类型不能定义方法,也就是说我们不能给别的包的类型定义方法。

结构体的匿名字段

匿名字段默认采用类型名作为字段名,结构体要求字段名称必须唯一,因此一个结构体中同种类型的匿名字段只能有一个。

嵌套结构体

一个结构体中可以嵌套包含另一个结构体或结构体指针。

嵌套匿名结构体

当访问结构体成员时会先在结构体中查找该字段,找不到再去匿名结构体中查找。

嵌套结构体的字段名冲突

嵌套结构体内部可能存在相同的字段名。这个时候为了避免歧义需要指定具体的内嵌结构体的字段。

结构体的“继承”

Go语言中使用结构体也可以实现其他编程语言中面向对象的继承。

结构体字段的可见性

结构体中字段大写开头表示可公开访问,小写表示私有(仅在定义当前结构体的包中可访问)。

结构体与JSON序列化

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。JSON键值对是用来保存JS对象的一种方式,键/值对组合中的键名写在前面并用双引号""包裹,使用冒号:分隔,然后紧接着值;多个键值之间使用英文,分隔。

结构体标签(Tag)

Tag是结构体的元信息,可以在运行的时候通过反射的机制读取出来。 Tag在结构体字段的后方定义,由一对反引号包裹起来,具体的格式如下:

`key1:"value1" key2:"value2"`

结构体标签由一个或多个键值对组成。键与值使用冒号分隔,值用双引号括起来。键值对之间使用一个空格分隔。 注意事项: 为结构体编写Tag时,必须严格遵守键值对的规则。结构体标签的解析代码的容错能力很差,一旦格式写错,编译和运行时都不会提示任何错误,通过反射也无法正确取值。例如不要在key和value之间添加空格。

例如我们为Student结构体的每个字段定义json序列化时使用的Tag:

URL中的空格、加号究竟应该使用何种方式编码

URL中不能显示地包含空格这已经是一个共识,而空格以何种形式存在,在不同的标准中又不完全一致,以致于不同的语言也有了不同的实现。

rfc2396 中明确表示空格应该被编码为 %20 。

而W3C的标准中却又说空格可以被替换为 + 或者 %20 。

老许当场懵逼,空格被替换为 + ,那 + 本身只能被编码。既然如此,为什么不直接对空格进行编码呢。当然这只是老许心中的疑惑,以前的背景我们已经无法追溯,已成的事实我们也无法改变。但,空格到底是被替换为 + 还是 20% , + 是否需要被编码都是现在的我们需要直面的问题。

作为Gopher最先关注的自然是Go语言本身的实现,因此我们首先了解一下Go中常用的三种URL编码方式的异同。

使用 url.QueryEscape 编码时,空格被编码为 + ,而 + 本身被编码为 %2B 。

使用 url.PathEscape 编码时,空格被编码为 20% , 而 + 则未被编码。

使用 (Values).Encode 方法编码时,空格被编码为 + ,而 + 本身被编码为 %2B ,进一步查看 (Values).Encode 方法的源码知其内部仍旧调用 url.QueryEscape 函数。而 (Values).Encode 方法和 url.QueryEscape 的区别在于前者仅编码query中的key和value,后者会对 = 、 均进行编码。

对我们开发者而言,这三种编码方式到底应该使用哪一种,请继续阅读后文相信你可以在后面的文章中找到答案。

既然空格和 + 在Go中的URL编码方式有不同的实现,那在其他语言中是否也存在这样的情况呢,下面以PHP和JS为例。

urlencode

rawurlencode

PHP的 urlencode 和Go的 url.QueryEscape 函数效果一致,而 rawurlencode 则将空格和 + 均进行编码。

encodeURI

encodeURIComponent

JS的 encodeURI 和Go的 url.PathEscape 函数效果一致,而 encodeURIComponent 则将空格和 + 均进行编码。

在前文中已经总结了 Go 、 PHP 和 JS 对 +Gopher指北 的编码操作,下面总结一下其对应的解码操作是否可行的二维表。

上表中的 YY 和 Y 同含义,老许仅以 YY 表示在Go中推荐使用 url.PathEscape 进行编码,同时在PHP和JS中分别推荐使用 rawurldecode 和 decodeURIComponent 进行解码。

在实际的开发过程中,Gopher一定会存在需要解码的场景,此时就需要和URL编码方进行沟通以得到合适的方式解码。

那有没有通用的不需要URL编解码的方式呢?毫无疑问是有的!以 base32 编码为例,其编码字符集为 A-Z和数字2-7 ,此时对值进行base32编码后就无需url编码了。

最后,衷心希望本文能够对各位读者有一定的帮助。

参考

基础知识 - Golang 中的格式化输入输出

【格式化输出】

// 格式化输出:将 arg 列表中的 arg 转换为字符串输出

// 使用动词 v 格式化 arg 列表,非字符串元素之间添加空格

Print(arg列表)

// 使用动词 v 格式化 arg 列表,所有元素之间添加空格,结尾添加换行符

Println(arg列表)

// 使用格式字符串格式化 arg 列表

Printf(格式字符串, arg列表)

// Print 类函数会返回已处理的 arg 数量和遇到的错误信息。

【格式字符串】

格式字符串由普通字符和占位符组成,例如:

"abc%+ #8.3[3]vdef"

其中 abc 和 def 是普通字符,其它部分是占位符,占位符以 % 开头(注:%% 将被转义为一个普通的 % 符号,这个不算开头),以动词结尾,格式如下:

%[旗标][宽度][.精度][arg索引]动词

方括号中的内容可以省略。

【旗标】

旗标有以下几种:

空格:对于数值类型的正数,保留一个空白的符号位(其它用法在动词部分说明)。

0 :用 0 进行宽度填充而不用空格,对于数值类型,符号将被移到所有 0 的前面。

其中 "0" 和 "-" 不能同时使用,优先使用 "-" 而忽略 "0"。

【宽度和精度】

“宽度”和“精度”都可以写成以下三种形式:

数值 | * | arg索引*

其中“数值”表示使用指定的数值作为宽度值或精度值,“ ”表示使用当前正在处理的 arg 的值作为宽度值或精度值,如果这样的话,要格式化的 arg 将自动跳转到下一个。“arg索引 ”表示使用指定 arg 的值作为宽度值或精度值,如果这样的话,要格式化的 arg 将自动跳转到指定 arg 的下一个。

宽度值:用于设置最小宽度。

精度值:对于浮点型,用于控制小数位数,对于字符串或字节数组,用于控制字符数量(不是字节数量)。

对于浮点型而言,动词 g/G 的精度值比较特殊,在适当的情况下,g/G 会设置总有效数字,而不是小数位数。

【arg 索引】

“arg索引”由中括号和 arg 序号组成(就像上面示例中的 [3]),用于指定当前要处理的 arg 的序号,序号从 1 开始:

'[' + arg序号 + ']'

【动词】

“动词”不能省略,不同的数据类型支持的动词不一样。

[通用动词]

v:默认格式,不同类型的默认格式如下:

布尔型:t

整 型:d

浮点型:g

复数型:g

字符串:s

通 道:p

指 针:p

无符号整型:x

T:输出 arg 的类型而不是值(使用 Go 语法格式)。

[布尔型]

t:输出 true 或 false 字符串。

[整型]

b/o/d:输出 2/8/10 进制格式

x/X :输出 16 进制格式(小写/大写)

c :输出数值所表示的 Unicode 字符

q :输出数值所表示的 Unicode 字符(带单引号)。对于无法显示的字符,将输出其转义字符。

U :输出 Unicode 码点(例如 U+1234,等同于字符串 "U+%04X" 的显示结果)

对于 o/x/X:

如果使用 "#" 旗标,则会添加前导 0 或 0x。

对于 U:

如果使用 "#" 旗标,则会在 Unicode 码点后面添加相应的 '字符'(前提是该字符必须可显示)

[浮点型和复数型]

b :科学计数法(以 2 为底)

e/E:科学计数法(以 10 为底,小写 e/大写 E)

f/F:普通小数格式(两者无区别)

g/G:大指数(指数 = 6)使用 %e/%E,其它情况使用 %f/%F

[字符串或字节切片]

s :普通字符串

q :双引号引起来的 Go 语法字符串

x/X:十六进制编码(小写/大写,以字节为元素进行编码,而不是字符)

对于 q:

如果使用了 "+" 旗标,则将所有非 ASCII 字符都进行转义处理。

如果使用了 "#" 旗标,则输出反引号引起来的字符串(前提是

字符串中不包含任何制表符以外的控制字符,否则忽略 # 旗标)

对于 x/X:

如果使用了 " " 旗标,则在每个元素之间添加空格。

如果使用了 "#" 旗标,则在十六进制格式之前添加 0x 前缀。

[指针类型]

p :带 0x 前缀的十六进制地址值。

[符合类型]

复合类型将使用不同的格式输出,格式如下:

结 构 体:{字段1 字段2 ...}

数组或切片:[元素0 元素1 ...]

映 射:map[键1:值1 键2:值2 ...]

指向符合元素的指针:{}, [], map[]

复合类型本身没有动词,动词将应用到复合类型的元素上。

结构体可以使用 "+v" 同时输出字段名。

【注意】

1、如果 arg 是一个反射值,则该 arg 将被它所持有的具体值所取代。

2、如果 arg 实现了 Formatter 接口,将调用它的 Format 方法完成格式化。

3、如果 v 动词使用了 # 旗标(%#v),并且 arg 实现了 GoStringer 接口,将调用它的 GoString 方法完成格式化。

如果格式化操作指定了字符串相关的动词(比如 %s、%q、%v、%x、%X),接下来的两条规则将适用:

4。如果 arg 实现了 error 接口,将调用它的 Error 方法完成格式化。

5。如果 arg 实现了 string 接口,将调用它的 String 方法完成格式化。

在实现格式化相关接口的时候,要避免无限递归的情况,比如:

type X string

func (x X) String() string {

return Sprintf("%s", x)

}

在格式化之前,要先转换数据类型,这样就可以避免无限递归:

func (x X) String() string {

return Sprintf("%s", string(x))

}

无限递归也可能发生在自引用数据类型上面,比如一个切片的元素引用了切片自身。这种情况比较罕见,比如:

a := make([]interface{}, 1)

a[0] = a

fmt.Println(a)

【格式化输入】

// 格式化输入:从输入端读取字符串(以空白分隔的值的序列),

// 并解析为具体的值存入相应的 arg 中,arg 必须是变量地址。

// 字符串中的连续空白视为单个空白,换行符根据不同情况处理。

// \r\n 被当做 \n 处理。

// 以动词 v 解析字符串,换行视为空白

Scan(arg列表)

// 以动词 v 解析字符串,换行结束解析

Scanln(arg列表)

// 根据格式字符串中指定的格式解析字符串

// 格式字符串中的换行符必须和输入端的换行符相匹配。

Scanf(格式字符串, arg列表)

// Scan 类函数会返回已处理的 arg 数量和遇到的错误信息。

【格式字符串】

格式字符串类似于 Printf 中的格式字符串,但下面的动词和旗标例外:

p :无效

T :无效

e/E/f/F/g/G:功能相同,都是扫描浮点数或复数

s/v :对字符串而言,扫描一个被空白分隔的子串

对于整型 arg 而言,v 动词可以扫描带有前导 0 或 0x 的八进制或十六进制数值。

宽度被用来指定最大扫描宽度(不会跨越空格),精度不被支持。

如果 arg 实现了 Scanner 接口,将调用它的 Scan 方法扫描相应数据。只有基础类型和实现了 Scanner 接口的类型可以使用 Scan 类方法进行扫描。

【注意】

连续调用 FScan 可能会丢失数据,因为 FScan 中使用了 UnreadRune 对读取的数据进行撤销,而参数 io.Reader 只有 Read 方法,不支持撤销。比如:

Go 语言交叉编译和构建标签

现代应用支持多平台运行是一件稀松平常的事情,在 Go 语言里面,为了支持应用的多平台部署,给用户提供了方便的配置方式来轻松构建针对不同操作系统和平台的运行文件。

Go 的构建约束,即构建标签,是以 // go:build 为开始的行注释,如果是 1.16 或之前的版本,格式是 // +build 。跟此变更相关的 issue 可以参考 25348 。

构建标签必须出现在 package 子句之前。为了区分构建标签和包文档的描述注释,构建标签后面应该有一个空行。

构建标签由||, , !运算符以及括号来组合表达。运算符与 Go 中的含义相同。

例如,以下构建标签在满足 linux 和 386 约束,或者满足 darwin 而 cgo 不满足时构建文件:

//go:build (linux 386) || (darwin !cgo)

又如:仅在使用 cgo 时,且仅在 Linux 和 OS X 上构建文件: //go:build cgo (linux || darwin)

注意:1.17 及以后的表达格式里,一个文件有多个 //go:build 行是错误的。

在 1.16 及以前的版本,多行构建标签是允许的,并且组合方式是通过空格和逗号等来区分,空格符表示 OR,逗号表示 AND,感叹号表示 NOT。而多行之间则表示 OR。gofmt 命令将在遇到旧语法时添加等效的 //go:build 约束。如下是示例:

如果文件名在去除扩展名和可能的 _test 后缀后匹配以下任何模式, (例如:source_windows_amd64.go)其中 GOOS 和 GOARCH 分别代表任何已知的操作系统和体系结构值,那么认为该文件除了文件中的任何显式约束之外,具有这些术语的所表达的隐式构建标签。

除了官方提供的针对不同平台的内置标签,用户也可以使用自定义标签,例如 //go:build prod , 只需要在执行 go build 时显式带上标签名 go build --tags=prod 。

想要使文件构建时被忽略,可以使用: //go:build ignore ,其他任何没有被用来定义为标签的词也可以,但"ignore"是约定俗成的。)。Go 语言目前支持的系统和架构可以参考 官方文档 。

Go语言的%d,%p,%v等占位符的使用

这些是死知识,把常用的记住,不常用的直接查表就行了

golang 的fmt 包实现了格式化I/O函数,类似于C的 printf 和 scanf。

type Human struct {

Name string

}

var people = Human{Name:"zhangsan"}

golang没有 '%u' 点位符,若整数为无符号类型,默认就会被打印成无符号的。

宽度与精度的控制格式以Unicode码点为单位。宽度为该数值占用区域的最小宽度;精度为小数点之后的位数。

操作数的类型为int时,宽度与精度都可用字符 '*' 表示。

对于 %g/%G 而言,精度为所有数字的总数,例如:123.45,%.4g 会打印123.5,(而 %6.2f 会打印123.45)。

%e 和 %f 的默认精度为6

对大多数的数值类型而言,宽度为输出的最小字符数,如果必要的话会为已格式化的形式填充空格。

而以字符串类型,精度为输出的最大字符数,如果必要的话会直接截断。

使用起来很简单,一般配合fmt.Printf()使用,因为fmt的Printf()是有格式的输出,切忌使用Println(),否则将会以字符串的形式输出。

查看原文: golang fmt格式“占位符”


网站标题:关于go语言对空格敏感吗的信息
本文路径:http://kswjz.com/article/hpessc.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流