python函数参数对象 python 函数的参数-成都快上网建站

python函数参数对象 python 函数的参数

如何进行处理Python对象参数解析

在Python对象中使用C语言编写的扩展模块,必须将其编译成动态链接库的形式,通常使用Python的C语言扩展接口提供的函数PyArg_ParseTuple()来获得这些参数值,希望本文能够对大家有帮助。

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名申请雅安服务器托管、营销软件、网站建设、武威网站维护、网站推广。

Python是用C语言实现的一种脚本语言,本身具有优良的开放性和可扩展性,并提供了方便灵活的应用程序接口(API)。从而使得C/C++程序员能够在各个级别上对Python解释器的功能进行扩展。在使用C/C++对Python进行功能扩展之前,必须首先掌握Python解释所提供的C语言接口。

Python是一门面向对象的脚本语言,所有的对象在Python解释器中都被表示成PyObject,PyObject结构包含Python对象的所有成员指针。并且对Python对象的类型信息和引用计数进行维护。在进行Python的扩展编程时,一旦要在C或者C++中对Python对象进行处理,就意味着要维护一个PyObject结构。

在Python的C语言扩展接口中,大部分函数都有一个或者多个参数为PyObject指针类型,并且返回值也大都为PyObject指针。为了简化内存管理,Python通过引用计数机制实现了自动的垃圾回收功能,Python中的每个对象都有一个引用计数。

用来计数该对象在不同场所分别被引用了多少次。每当引用一次Python对象,相应的引用计数就增1,每当消毁一次Python对象,则相应的引用就减1,只有当引用计数为零时,才真正从内存中删除Python对象。

下面的例子说明了Python解释器如何利用引用计数来对Pyhon对象进行管理:

#include Python.h  PyObject* wrap_fact(PyObject* self, PyObject* args) 

{    int n, result;     

if (! PyArg_ParseTuple(args, "i:fact", n))      return NULL; 

result = fact(n);    return Py_BuildValue("i", result);  } 

static PyMethodDef exampleMethods[] =   { 

{"fact", wrap_fact, METH_VARARGS, "Caculate N!"},    {NULL, NULL}  };

void initexample()   {    PyObject* m; 

m = Py_InitModule("example", exampleMethods);  }

在C/C++中处理Python对象时,对引用计数进行正确的维护是一个关键问题,处理不好将很容易产生内存泄漏。Python的C语言接口提供了一些宏来对引用计数进行维护,最常见的是用Py_INCREF()来增加使Python对象的引用计数增1,用Py_DECREF()来使Python对象的引用计数减1。

该函数是Python解释器和C函数进行交互的接口,带有两个参数:self和args。参数self只在C函数被实现为内联方法(built-in method)时才被用到。通常该参数的值为空(NULL),参数args中包含了Python解释器要传递给C函数的所有参数,通常使用Python的C语言扩展接口提供的函数PyArg_ParseTuple()来获得这些参数值。

方法列表中的每项由四个部分组成:方法名、导出函数、参数传递方式和方法描述。方法名是从Python解释器中调用该方法时所使用的名字。参数传递方式则规定了Python向C函数传递参数的具体形式,可选的两种方式是METH_VARARGS和METH_KEYWORDS。

其中METH_VARARGS是参数传递的标准形式,它通过Python的元组在Python解释器和C函数之间传递参数,若采用METH_KEYWORD方式,则Python解释器和C函数之间将通过Python的字典类型在两者之间进行参数传递。

如果解决了您的问题请采纳!

如果未解决请继续追问!

python函数调用的参数传递

python的函数参数传递是"引用传递(地址传递)"。

python中赋值语句的过程(x = 1):先申请一段内存分配给一个整型对象来存储数据1,然后让变量x去指向这个对象,实际上就是指向这段内存(这里有点和C语言中的指针类似)。

在Python中,会为每个层次生成一个符号表,里层能调用外层中的变量,而外层不能调用里层中的变量,并且当外层和里层有同名变量时,外层变量会被里层变量屏蔽掉。函数  调用  会为函数局部变量生成一个新的符号表。

局部变量:作用于该函数内部,一旦函数执行完成,该变量就被回收。

全局变量:它是在函数外部定义的,作用域是整个文件。全局变量可以直接在函数里面应用,但是如果要在函数内部改变全局变量,必须使用global关键字进行声明。

注意 :默认值在函数  定义  作用域被解析

在定义函数时,就已经执行力它的局部变量

python中不可变类型是共享内存地址的:把相同的两个不可变类型数据赋给两个不同变量a,b,a,b在内存中的地址是一样的。

Python的函数和参数

parameter 是函数定义的参数形式

argument 是函数调用时传入的参数实体。

对于函数调用的传参模式,一般有两种:

此外,

也是关键字传参

python的函数参数定义一般来说有五种: 位置和关键字参数混合 , 仅位置参数 , 仅关键字参数 , 可变位置参数 , 可变关键字参数 。其中仅位置参数的方式仅仅是一个概念,python语法中暂时没有这样的设计。

通常我们见到的函数是位置和关键字混合的方式。

既可以用关键字又可以用位置调用

这种方式的定义只能使用关键字传参的模式

f(*some_list) 与 f(arg1, arg2, ...) (其中some_list = [arg1, arg2, ...])是等价的

网络模块request的request方法的设计

多数的可选参数被设计成可变关键字参数

有多种方法能够为函数定义输出:

非常晦涩

如果使用可变对象作为函数的默认参数,会导致默认参数在所有的函数调用中被共享。

例子1:

addItem方法的data设计了一个默认参数,使用不当会造成默认参数被共享。

python里面,函数的默认参数被存在__default__属性中,这是一个元组类型

例子2:

在例子1中,默认参数是一个列表,它是mutable的数据类型,当它写进 __defauts__属性中时,函数addItem的操作并不会改变它的id,相当于 __defauts__只是保存了data的引用,对于它的内存数据并不关心,每次调用addItem,都可以修改 addItem.__defauts__中的数据,它是一个共享数据。

如果默认参数是一个imutable类型,情况将会不一样,你无法改变默认参数第一次存入的值。

例子1中,连续调用addItem('world') 的结果会是

而不是期望的

python函数传对象对性能的影响

python函数传对象对性能有影响。在Python中,一切皆对象,Python参数传递采用的都是“传对象引用”的方式。实际上,这种方式相当于传值和传引用的一种综合。如果函数收到的是一个可变对象(比如字典或者列表)的引用,就能修改对象的原始值,相当于通过“传引用”来传递对象。如果函数收到的是一个不可变对象(比如数字、字符或者元组)的引用,就不能直接修改原始对象,相当于通过“传值’来传递对象,此时如果想改变这些变量的值,可以将这些变量申明为全局变量。

python中视图函数传值的数据类型可以传对象吗

python的一切数据类型都是对象。但是python的对象分为不可变对象和可变对象。python的变量是引用,对python变量的赋值是引用去绑定该对象。

可变对象的数据发生改变,例如列表和字典,引用不会更改绑定对象,毕竟本身就是用于增删改查的,频繁地产生新对象必然导致开销巨大,只需要该对象内部变化就行;但对于绑定了不可变对象的引用,对象一旦改变就会使引用绑定新的对象。

这一点也会反应到函数的参数上。python的传值方式是“传对象”引用。python的函数,形参实际上是引用,实参便是对象绑定到该引用上。本质是形参会被作为函数的局部变量,在开辟的函数的栈内存中被声明。

简要来讲:

如果参数是数,则类似值传递,

如果参数是列表和字典,则类似引用传递。

每个对象都会有个id, 可以用id()验证以上说法:

这个函数的参数是列表,是可变对象。

Python函数的参数类型

Python函数的参数类型主要包括必选参数、可选参数、可变参数、位置参数和关键字参数,本文介绍一下他们的定义以及可变数据类型参数传递需要注意的地方。

必选参数(Required arguments)是必须输入的参数,比如下面的代码,必须输入2个参数,否则就会报错:

其实上面例子中的参数 num1和num2也属于关键字参数,比如可以通过如下方式调用:

执行结果:

可选参数(Optional arguments)可以不用传入函数,有一个默认值,如果没有传入会使用默认值,不会报错。

位置参数(positional arguments)根据其在函数定义中的位置调用,下面是pow()函数的帮助信息:

x,y,z三个参数的的顺序是固定的,并且不能使用关键字:

输出:

在上面的pow()函数帮助信息中可以看到位置参数后面加了一个反斜杠 / ,这是python内置函数的语法定义,Python开发人员不能在python3.8版本之前的代码中使用此语法。但python3.0到3.7版本可以使用如下方式定义位置参数:

星号前面的参数为位置参数或者关键字参数,星号后面是强制关键字参数,具体介绍见强制关键字参数。

python3.8版本引入了强制位置参数(Positional-Only Parameters),也就是我们可以使用反斜杠 / 语法来定义位置参数了,可以写成如下形式:

来看下面的例子:

python3.8运行:

不能使用关键字参数形式赋值了。

可变参数 (varargs argument) 就是传入的参数个数是可变的,可以是0-n个,使用星号( * )将输入参数自动组装为一个元组(tuple):

执行结果:

关键字参数(keyword argument)允许将任意个含参数名的参数导入到python函数中,使用双星号( ** ),在函数内部自动组装为一个字典。

执行结果:

上面介绍的参数可以混合使用:

结果:

注意:由于传入的参数个数不定,所以当与普通参数一同使用时,必须把带星号的参数放在最后。

强制关键字参数(Keyword-Only Arguments)是python3引入的特性,可参考:。 使用一个星号隔开:

在位置参数一节介绍过星号前面的参数可以是位置参数和关键字参数。星号后面的参数都是强制关键字参数,必须以指定参数名的方式传参,如果强制关键字参数没有设置默认参数,调用函数时必须传参。

执行结果:

也可以在可变参数后面命名关键字参数,这样就不需要星号分隔符了:

执行结果:

在Python对象及内存管理机制中介绍了python中的参数传递属于对象的 引用传递 (pass by object reference),在编写函数的时候需要特别注意。

先来看个例子:

执行结果:

l1 和 l2指向相同的地址,由于列表可变,l1改变时,l2也跟着变了。

接着看下面的例子:

结果:

l1没有变化!为什么不是[1, 2, 3, 4]呢?

l = l + [4]表示创建一个“末尾加入元素 4“的新列表,并让 l 指向这个新的对象,l1没有进行任何操作,因此 l1 的值不变。如果要改变l1的值,需要加一个返回值:

结果:

下面的代码执行结果又是什么呢?

执行结果:

和第一个例子一样,l1 和 l2指向相同的地址,所以会一起改变。这个问题怎么解决呢?

可以使用下面的方式:

也可以使用浅拷贝或者深度拷贝,具体使用方法可参考Python对象及内存管理机制。这个问题在Python编程时需要特别注意。

本文主要介绍了python函数的几种参数类型:必选参数、可选参数、可变参数、位置参数、强制位置参数、关键字参数、强制关键字参数,注意他们不是完全独立的,比如必选参数、可选参数也可以是关键字参数,位置参数可以是必选参数或者可选参数。

另外,python中的参数传递属于对象的 引用传递 ,在对可变数据类型进行参数传递时需要特别注意,如有必要,使用python的拷贝方法。

参考文档:

--THE END--


名称栏目:python函数参数对象 python 函数的参数
当前URL:http://kswjz.com/article/hpdddd.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流