扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
Python在定义变量的时候不用指明具体的的类型,解释器会在运行的时候会自动检查 变量的类型,并根据需要进行隐式的类型转化。因为Python是动态语言,所以一般情 况下是不推荐进行类型转化的。比如"+"操作时,如果加号两边是数据就进行加法操 作,如果两边是字符串就进行字符串连接操作,如果两边是列表就进行合并操作,甚 至可以进行复数的运算。解释器会在运行时根据两边的变量的类型调用不同的内部方法。 当加号两边的变量类型不一样的时候,又不能进行类型转化,就会抛出TypeError的异常。
创新互联建站主要从事网站设计、成都网站设计、网页设计、企业做网站、公司建网站等业务。立足成都服务德阳,10余年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:028-86922220
但是在实际的开发中,为了提高代码的健壮性,我们还是需要进行类型检查的。而进行 类型检查首先想到的就是用type(),比如使用type判断一个int类型。
import types
if type(1) is types.Integer:
print('1是int类型')
else:
print('1不是int类型')
上面的程序会输出:1是int类型
我们在types中可以找到一些常用的类型,在2.7.6中显示的结果:
types.BooleanType # bool类型
types.BufferType # buffer类型
types.BuiltinFunctionType # 内建函数,比如len()
types.BuiltinMethodType # 内建方法,指的是类中的方法
types.ClassType # 类类型
types.CodeType # 代码块类型
types.ComplexType # 复数类型
types.DictProxyType # 字典代理类型
types.DictType # 字典类型
types.DictionaryType # 字典备用的类型
types.EllipsisType
types.FileType # 文件类型
types.FloatType # 浮点类型
types.FrameType
types.FunctionType # 函数类型
types.GeneratorType
types.GetSetDescriptorType
types.InstanceType # 实例类型
types.IntType # int类型
types.LambdaType # lambda类型
types.ListType # 列表类型
types.LongType # long类型
types.MemberDescriptorType
types.MethodType # 方法类型
types.ModuleType # module类型
types.NoneType # None类型
types.NotImplementedType
types.ObjectType # object类型
types.SliceTypeh
types.StringType # 字符串类型
types.StringTypes
types.TracebackType
types.TupleType # 元组类型
types.TypeType # 类型本身
types.UnboundMethodType
types.UnicodeType
types.XRangeType
在Python 3中,类型已经明显减少了很多
types.BuiltinFunctionType
types.BuiltinMethodType
types.CodeType
types.DynamicClassAttribute
types.FrameType
types.FunctionType
types.GeneratorType
types.GetSetDescriptorType
types.LambdaType
types.MappingProxyType
types.MemberDescriptorType
types.MethodType
types.ModuleType
types.SimpleNamespace
types.TracebackType
types.new_class
types.prepare_class
但是我们并不推荐使用type来进行类型检查,之所以把这些类型列出来,也是为了扩展知识 面。那为什么不推荐使用type进行类型检查呢?我们来看一下下面的例子。
import types
class UserInt(int):
def __init__(self, val=0):
self.val = int(val)
i = 1
n = UserInt(2)
print(type(i) is type(n))
上面的代码输出:False
这就说明i和n的类型是不一样的,而实际上UserInt是继承自int的,所以这个判断是存在问题的, 当我们对Python内建类型进行扩展的时候,type返回的结果就不够准确了。我们再看一个例子。
class A():
pass
class B():
pass
a = A()
b = B()
print(type(a) is type(b))
代码的输出结果: True
type比较的结果a和b的类型是一样的,结果明显是不准确的。这种古典类的实例,type返回的结果都 是一样的,而这样的结果不是我们想要的。对于内建的基本类型来说,使用tpye来检查是没有问题的, 可是当应用到其他场合的时候,type就显得不可靠了。这个时候我们就需要使用isinstance来进行类型 检查。
isinstance(object, classinfo)
object表示实例,classinfo可以是直接或间接类名、基本类型或者有它们组成的元组。
isinstance(2, float)
False
isinstance('a', (str, unicode))
True
isinstance((2, 3), (str, list, tuple))
True
在学习Python的过程中,有几个比较重要的内置函数:help()函数、dir()函数、input()与raw_input()函数、print()函数、type()函数。
第一、help()函数
Help()函数的参数分为两种:如果传一个字符串做参数的话,它会自动搜索以这个字符串命名的模块、方法等;如果传入的是一个对象,就会显示这个对象的类型的帮助。比如输入help(‘print’),它就会寻找以‘print’为名的模块、类等,找不到就会看到提示信息;而print在Python里是一个保留字,和pass、return同等,而非对象,所以help(print)也会报错。
第二、dir()函数
dir()函数返回任意对象的属性和方法列表,包含模块对象、函数对象、字符串对象、列表对象、字典对象等。尽管查找和导入模块相对容易,但是记住每个模块包含什么却不是这么简单,您并不希望总是必须查看源代码来找出答案。Python提供了一种方法,可以使用内置的dir()函数来检查模块的内容,当你为dir()提供一个模块名的时候,它返回模块定义的属性列表。dir()函数适用于所有对象的类型,包含字符串、整数、列表、元组、字典、函数、定制类、类实例和类方法。
第三、input与raw_input函数
都是用于读取用户输入的,不同的是input()函数期望用户输入的是一个有效的表达式,而raw_input()函数是将用户的输入包装成一个字符串。
第四、Print()函数
Print在Python3版本之间是作为Python语句使用的,在Python3里print是作为函数使用的。
第五、type()函数
Type()函数返回任意对象的数据类型。在types模块中列出了可能的数据类型,这对于处理多种数据类型的函数非常有用,它通过返回类型对象来做到这一点,可以将这个类型对象与types模块中定义类型相比较。
Python解释器内置了许多函数,这意味着我们无需定义,始终可以它们。接下来和大家一起讨论一个常用的内建函数-input()和isinstance()。
input()
input()函数读取用户输入,并转换成字符串:
a = input() # 将input()返回的值赋值给a
Python
a # 查看a的值(为字符串'Python')
'Python'
input()函数可以提供一个参数,用来提示用户:
b = input('请输入你最喜欢的水果: ') # 给用户必要的提示
请输入你最喜欢的水果: 香蕉
b
'香蕉'
需要注意的是,input()函数返回的值总是字符串,当用户输入的是数字也是这样,所以当使用它时一定要注意:
num = input('请输入一个数字: ')
请输入一个数字: 10
num + 9 # 试图把num和数字相加
Traceback (most recent call last):
File "", line 1, in
TypeError: must be str, not int
num
'10'
type(num) # 查看num的数字类型
class 'str'
isinstance()
isinstance()函数用于检查对象是否为指定类(或者说数据类型)的实例。isintance()的第一个参数为一个对象,第二个参数为要检查的数据类型。
举个例子,比如有有一个变量,你想检查它是否为数字类型,可以使用isinstance()函数:
score = 90
result = isinstance(score, int)
if result:
... print('score为int数据类型')
... else:
... print('score不为int数据类型')
...
score为int数据类型
除了能检查是否为int类型外,isintance()还能检查其他数据类型(当然了),下面是一个综合示例:
pi = 3.14
name = 'Wang'
complex_num = 1 + 2j
isinstance(pi, float) # 3.14为浮点数类型
True
isinstance(name, str) # 'Wang'为字符串类型
True
isinstance(complex_num, complex) # 1 + 2j为复数
True
isinstance()还可以验证某个对象是否为自定义的类型:
class Developer: # 定义一个叫做Developer的类
...
... def __init__(self, name): # __init__方法中,需要输入名字
... self.name = name
... def display(self): # 定义了display()方法
... print("Developer:", self.name, "-")
...
class PythonDeveloper(Developer): # PythonDeveloper类,继承了Developer类
...
... def __init__(self, name, language):
... self.name = name
... self.language = language
...
... def display(self): # 覆盖了父类的display方法
... print("Python Developer:", self.name, "language:", self.language, "-")
...
dev = Developer('Zhang') # 创建一个Developer对象
dev.display() # 调用display()方法,以查看该对象
Developer: Zhang -
isinstance(dev, Developer) # 判断dev是否为Developer类,答案是肯定的
True
isinstance(dev, PythonDeveloper) # 判断dev是否为PythonDeveloper类,当然不是
False
python_dev = PythonDeveloper('Liu', 'Python') # 创建一个PythonDeveloper对象,注意PythonDeveloper是Developer的子类
python_dev.display() # 调用display方法
Python Developer: Liu language: Python -
isinstance(python_dev, Developer) # 判断python_dev是否为Developer类,答案是肯定的
True
isinstance(python_dev, PythonDeveloper) # 判断python是否为PythonDeveloper类,答案也是肯定的
True
关于Python的基础问题可以看下这个网页的视频教程,网页链接,希望我的回答能帮到你。
python常见的内置函数有:
1. abs()函数返回数字的绝对值。
2. all() 函数用于判断给定的参数中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False 外都算 True;空元组、空列表返回值为True。
3. any() 函数用于判断给定的参数是否全部为False,是则返回False,如果有一个为True,则返回True。 元素除了是 0、空、False外都算 TRUE。
4. bin()函数返回一个整数int或者长整数long int的二进制表示。
5. bool() 函数用于将给定参数转换为布尔类型,如果参数不为空或不为0,返回True;参数为0或没有参数,返回False。
6. bytearray()方法返回一个新字节数组。这个数组里的元素是可变的,并且每个元素的值范围: 0 = x 256(即0-255)。即bytearray()是可修改的二进制字节格式。
7. callable()函数用于检查一个对象是否可调用的。对于函数、方法、lambda函式、类以及实现了 __call__ 方法的类实例, 它都返回 True。(可以加括号的都可以调用)
8. chr()函数用一个范围在range(256)内(即0~255)的整数作参数,返回一个对应的ASCII数值。
9. dict()函数用来将元组/列表转换为字典格式。
10. dir()函数不带参数时,返回当前范围内的变量、方法和定义的类型列表;带参数时,返回参数的属性、方法列表。
扩展资料:
如何查看python3.6的内置函数?
1、首先先打开python自带的集成开发环境IDLE;
2、然后我们直接输入"dir(__builtins__)",需要注意的是builtins左右的下划线都是两个;
3、回车之后我们就可以看到python所有的内置函数;
4、接下来我们学习第二种查看python内置函数的方法,我们直接在IDLE中输入"import builtins",然后输入"dir(builtins)";
5、然后回车,同样的这个方法也可以得到所有的python内置的函数;
6、这里我们可以使用python内置函数len()来查看python内置函数的个数,这里我们直接输入"len(dir(builtins))";
7、回车之后我们可以看到系统返回值153,说明我们现在这个版本中有153个内置函数;
8、最后我们介绍一个比较有用的内置函数"help",python内置函数有一百多个,我们当然不能记住所有的函数,这里python提供了一个"help"函数,我们来看一个例子一起来体会一下help函数的用法,这里我们直接输入"help(len)",然后回车,会看到系统给我们对于内置函数"len"的解释,当然对于其他函数可能会有更加详细的解释以及用法提示。
1. 不同类型的参数简述
#这里先说明python函数调用得语法为:
复制代码
代码如下:
func(positional_args,
keyword_args,
*tuple_grp_nonkw_args,
**dict_grp_kw_args)
#为了方便说明,之后用以下函数进行举例
def test(a,b,c,d,e):
print a,b,c,d,e
举个例子来说明这4种调用方式得区别:
复制代码
代码如下:
#
#positional_args方式
test(1,2,3,4,5)
1 2 3 4 5
#这种调用方式的函数处理等价于
a,b,c,d,e = 1,2,3,4,5
print a,b,c,d,e
#
#keyword_args方式
test(a=1,b=3,c=4,d=2,e=1)
1 3 4 2 1
#这种处理方式得函数处理等价于
a=1
b=3
c=4
d=2
e=1
print a,b,c,d,e
#
#*tuple_grp_nonkw_args方式
x = 1,2,3,4,5
test(*x)
1 2 3 4
5
#这种方式函数处理等价于
复制代码
代码如下:
a,b,c,d,e = x
a,b,c,d,e
#特别说明:x也可以为dict类型,x为dick类型时将键传递给函数
y
{'a': 1,
'c': 6, 'b': 2, 'e': 1, 'd': 1}
test(*y)
a c b e d
#
#**dict_grp_kw_args方式
y
{'a': 1, 'c': 6, 'b': 2, 'e': 1, 'd': 1}
test(**y)
1 2 6
1 1
#这种函数处理方式等价于
a = y['a']
b = y['b']
... #c,d,e不再赘述
a,b,c,d,e
2.
不同类型参数混用需要注意的一些细节
接下来说明不同参数类型混用的情况,要理解不同参数混用得语法需要理解以下几方面内容.
首先要明白,函数调用使用参数类型必须严格按照顺序,不能随意调换顺序,否则会报错. 如 (a=1,2,3,4,5)会引发错误,;
(*x,2,3)也会被当成非法.
其次,函数对不同方式处理的顺序也是按照上述的类型顺序.因为#keyword_args方式和**dict_grp_kw_args方式对参数一一指定,所以无所谓顺序.所以只需要考虑顺序赋值(positional_args)和列表赋值(*tuple_grp_nonkw_args)的顺序.因此,可以简单理解为只有#positional_args方式,#*tuple_grp_nonkw_args方式有逻辑先后顺序的.
最后,参数是不允许多次赋值的.
举个例子说明,顺序赋值(positional_args)和列表赋值(*tuple_grp_nonkw_args)的逻辑先后关系:
复制代码
代码如下:
#只有在顺序赋值,列表赋值在结果上存在罗辑先后关系
#正确的例子1
x =
{3,4,5}
test(1,2,*x)
1 2 3 4 5
#正确的例子2
test(1,e=2,*x)
1 3 4 5 2
#错误的例子
test(1,b=2,*x)
Traceback (most recent call
last):
File "stdin", line 1, in module
TypeError: test()
got multiple values for keyword argument 'b'
#正确的例子1,处理等价于
a,b = 1,2 #顺序参数
c,d,e = x #列表参数
print a,b,c,d,e
#正确的例子2,处理等价于
a = 1 #顺序参数
e = 2 #关键字参数
b,c,d = x #列表参数
#错误的例子,处理等价于
a = 1 #顺序参数
b = 2 #关键字参数
b,c,d = x
#列表参数
#这里由于b多次赋值导致异常,可见只有顺序参数和列表参数存在罗辑先后关系
函数声明区别
理解了函数调用中不同类型参数得区别之后,再来理解函数声明中不同参数得区别就简单很多了.
1. 函数声明中的参数类型说明
函数声明只有3种类型, arg, *arg , **arg 他们得作用和函数调用刚好相反.
调用时*tuple_grp_nonkw_args将列表转换为顺序参数,而声明中的*arg的作用是将顺序赋值(positional_args)转换为列表.
调用时**dict_grp_kw_args将字典转换为关键字参数,而声明中**arg则反过来将关键字参数(keyword_args)转换为字典.
特别提醒:*arg
和 **arg可以为空值.
以下举例说明上述规则:
复制代码
代码如下:
#arg, *arg和**arg作用举例
def
test2(a,*b,**c):
print a,b,c
#
#*arg 和
**arg可以不传递参数
test2(1)
1 () {}
#arg必须传递参数
test2()
Traceback (most recent call last):
File "stdin", line 1,
in module
TypeError: test2() takes at least 1 argument (0 given)
#
#*arg将顺positional_args转换为列表
test2(1,2,[1,2],{'a':1,'b':2})
1 (2, [1, 2], {'a': 1, 'b': 2})
{}
#该处理等价于
a = 1 #arg参数处理
b = 2,[1,2],{'a':1,'b':2} #*arg参数处理
c =
dict() #**arg参数处理
print a,b,c
#
#**arg将keyword_args转换为字典
test2(1,2,3,d={1:2,3:4}, c=12, b=1)
1 (2, 3) {'c': 12, 'b': 1, 'd': {1: 2, 3:
4}}
#该处理等价于
a = 1 #arg参数处理
b= 2,3 #*arg参数处理
#**arg参数处理
c =
dict()
c['d'] = {1:2, 3:4}
c['c'] = 12
c['b'] = 1
a,b,c
2. 处理顺序问题
函数总是先处理arg类型参数,再处理*arg和**arg类型的参数.
因为*arg和**arg针对的调用参数类型不同,所以不需要考虑他们得顺序.
复制代码
代码如下:
def test2(a,*b,**c):
a,b,c
test2(1, b=[1,2,3], c={1:2, 3:4},a=1)
Traceback (most
recent call last):
File "stdin", line 1, in
module
TypeError: test2() got multiple values for keyword argument
'a'
#这里会报错得原因是,总是先处理arg类型得参数
#该函数调用等价于
#处理arg类型参数:
a = 1
a = 1
#多次赋值,导致异常
#处理其他类型参数
...
print a,b,c
def foo(x,y):
... def bar():
x,y
... return bar
...
#查看func_closure的引用信息
a =
[1,2]
b = foo(a,0)
b.func_closure[0].cell_contents
[1, 2]
b.func_closure[1].cell_contents
b()
[1, 2] 0
#可变对象仍然能被修改
a.append(3)
b.func_closure[0].cell_contents
[1, 2, 3]
b()
[1, 2, 3] 0
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流