python绘制函数曲线 python绘制余弦函数的曲线图-成都快上网建站

python绘制函数曲线 python绘制余弦函数的曲线图

Python如何画函数的曲线

输入以下代码导入我们用到的函数库。

创新互联公司是一家集网站建设,梅县企业网站建设,梅县品牌网站建设,网站定制,梅县网站建设报价,网络营销,网络优化,梅县网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

import numpy as np

import matplotlib.pyplot as plt

x=np.arange(0,5,0.1);

y=np.sin(x);

plt.plot(x,y)

采用刚才代码后有可能无法显示下图,然后在输入以下代码就可以了:

plt.show()

python怎么画曲线

打开Python,使用import导入numpy和matplotlib.pyplot模块。输入函数数据,然后使用plt.show()展示绘制的图像即可。

python绘图篇

1,xlable,ylable设置x,y轴的标题文字。

2,title设置标题。

3,xlim,ylim设置x,y轴显示范围。

plt.show()显示绘图窗口,通常情况下,show()会阻碍程序运行,带-wthread等参数的环境下,窗口不会关闭。

plt.saveFig()保存图像。

面向对象绘图

1,当前图表和子图可以用gcf(),gca()获得。

subplot()绘制包含多个图表的子图。

configure subplots,可调节子图与图表边框距离。

可以通过修改配置文件更改对象属性。

图标显示中文

1,在程序中直接指定字体。

2, 在程序开始修改配置字典reParams.

3,修改配置文件。

Artist对象

1,图标的绘制领域。

2,如何在FigureCanvas对象上绘图。

3,如何使用Renderer在FigureCanvas对象上绘图。

FigureCanvas和Render处理底层图像操作,Artist处理高层结构。

分为简单对象和容器对象,简单的Aritist是标准的绘图元件,例如Line 2D,Rectangle,Text,AxesImage等,而容器类型包含许多简单的的 Aritist对象,使他们构成一个整体,例如Axis,Axes,Figure等。

直接创建Artist对象进项绘图操作步奏:

1,创建Figure对象(通过figure()函数,会进行许多初始化操作,不建议直接创建。)

2,为Figure对象创建一个或多个Axes对象。

3,调用Axes对象的方法创建各类简单的Artist对象。

Figure容器

如何找到指定的Artist对象。

1,可调用add_subplot()和add_axes()方法向图表添加子图。

2,可使用for循环添加栅格。

3,可通过transform修改坐标原点。

Axes容器

1,patch修改背景。

2,包含坐标轴,坐标网格,刻度标签,坐标轴标题等内容。

3,get_ticklabels(),,get-ticklines获得刻度标签和刻度线。

1,可对曲线进行插值。

2,fill_between()绘制交点。

3,坐标变换。

4,绘制阴影。

5,添加注释。

1,绘制直方图的函数是

2,箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位

数、中位数、第三四分位数与最大值来描述数据的一种方法,它可以粗略地看出数据是否具有对称性以及分

布的分散程度等信息,特别可以用于对几个样本的比较。

3,饼图就是把一个圆盘按所需表达变量的观察数划分为若干份,每一份的角度(即面积)等价于每个观察

值的大小。

4,散点图

5,QQ图

低层绘图函数

类似于barplot(),dotchart()和plot()这样的函数采用低层的绘图函数来画线和点,来表达它们在页面上放置的位置以及其他各种特征。

在这一节中,我们会描述一些低层的绘图函数,用户也可以调用这些函数用于绘图。首先我们先讲一下R怎么描述一个页面;然后我们讲怎么在页面上添加点,线和文字;最后讲一下怎么修改一些基本的图形。

绘图区域与边界

R在绘图时,将显示区域划分为几个部分。绘制区域显示了根据数据描绘出来的图像,在此区域内R根据数据选择一个坐标系,通过显示出来的坐标轴可以看到R使用的坐标系。在绘制区域之外是边沿区,从底部开始按顺时针方向分别用数字1到4表示。文字和标签通常显示在边沿区域内,按照从内到外的行数先后显示。

添加对象

在绘制的图像上还可以继续添加若干对象,下面是几个有用的函数,以及对其功能的说明。

•points(x, y, ...),添加点

•lines(x, y, ...),添加线段

•text(x, y, labels, ...),添加文字

•abline(a, b, ...),添加直线y=a+bx

•abline(h=y, ...),添加水平线

•abline(v=x, ...),添加垂直线

•polygon(x, y, ...),添加一个闭合的多边形

•segments(x0, y0, x1, y1, ...),画线段

•arrows(x0, y0, x1, y1, ...),画箭头

•symbols(x, y, ...),添加各种符号

•legend(x, y, legend, ...),添加图列说明

Python matplotlib之函数图像绘制、线条rc参数设置

为避免中文显示出错,需导入matplotlib.pylab库

1.2.1 确定数据

1.2.2 创建画布

1.2.3 添加标题

1.2.4 添加x,y轴名称

1.2.5 添加x,y轴范围

1.2.6 添加x,y轴刻度

1.2.7 绘制曲线、图例, 并保存图片

保存图片时,dpi为清晰度,数值越高越清晰。请注意,函数结尾处,必须加plt.show(),不然图像不显示。

绘制流程与绘制不含子图的图像一致,只需注意一点:创建画布。

合理调整figsize、dpi,可避免出现第一幅图横轴名称与第二幅图标题相互遮盖的现象.

2.2.1 rc参数类型

2.2.2 方法1:使用rcParams设置

2.2.3 方法2:plot内设置

2.2.4 方法3:plot内简化设置

方法2中,线条形状,linestyle可简写为ls;线条宽度,linewidth可简写为lw;线条颜色,color可简写为c,等等。

python 怎么画与其他方法进行比较的ROC曲线?

使用sklearn的一系列方法后可以很方便的绘制处ROC曲线,这里简单实现以下。

主要是利用混淆矩阵中的知识作为绘制的数据(如果不是很懂可以先看看这里的基础):

tpr(Ture Positive Rate):真阳率 图像的纵坐标

fpr(False Positive Rate):阳率(伪阳率) 图像的横坐标

mean_tpr:累计真阳率求平均值

mean_fpr:累计阳率求平均值

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm, datasets

from sklearn.metrics import roc_curve, auc

from sklearn.model_selection import StratifiedKFold

iris = datasets.load_iris()

X = iris.data

y = iris.target

X, y = X[y != 2], y[y != 2] # 去掉了label为2,label只能二分,才可以。

n_samples, n_features = X.shape

# 增加噪声特征

random_state = np.random.RandomState(0)

X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

cv = StratifiedKFold(n_splits=6) #导入该模型,后面将数据划分6份

classifier = svm.SVC(kernel='linear', probability=True,random_state=random_state) # SVC模型 可以换作AdaBoost模型试试

# 画平均ROC曲线的两个参数

mean_tpr = 0.0 # 用来记录画平均ROC曲线的信息

mean_fpr = np.linspace(0, 1, 100)

cnt = 0

for i, (train, test) in enumerate(cv.split(X,y)): #利用模型划分数据集和目标变量 为一一对应的下标

cnt +=1

probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) # 训练模型后预测每条样本得到两种结果的概率

fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) # 该函数得到伪正例、真正例、阈值,这里只使用前两个

mean_tpr += np.interp(mean_fpr, fpr, tpr) # 插值函数 interp(x坐标,每次x增加距离,y坐标) 累计每次循环的总值后面求平均值

mean_tpr[0] = 0.0 # 将第一个真正例=0 以0为起点

roc_auc = auc(fpr, tpr) # 求auc面积

plt.plot(fpr, tpr, lw=1, label='ROC fold {0:.2f} (area = {1:.2f})'.format(i, roc_auc)) # 画出当前分割数据的ROC曲线

plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck') # 画对角线

mean_tpr /= cnt # 求数组的平均值

mean_tpr[-1] = 1.0 # 坐标最后一个点为(1,1) 以1为终点

mean_auc = auc(mean_fpr, mean_tpr)

plt.plot(mean_fpr, mean_tpr, 'k--',label='Mean ROC (area = {0:.2f})'.format(mean_auc), lw=2)

plt.xlim([-0.05, 1.05]) # 设置x、y轴的上下限,设置宽一点,以免和边缘重合,可以更好的观察图像的整体

plt.ylim([-0.05, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate') # 可以使用中文,但需要导入一些库即字体

plt.title('Receiver operating characteristic example')

plt.legend(loc="lower right")

plt.show()


名称栏目:python绘制函数曲线 python绘制余弦函数的曲线图
文章分享:http://kswjz.com/article/hisgce.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流