扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
做一个安静细微的人,于角落里自在开放,默默悦人,却始终不引起过分热闹的关注,保有独立而随意的品格,这就很好。
成都创新互联公司长期为上千余家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为施秉企业提供专业的成都网站建设、网站建设,施秉网站改版等技术服务。拥有十多年丰富建站经验和众多成功案例,为您定制开发。
1:二分法
求根号5
a:折半: 5/2=2.5
b:平方校验: 2.5*2.5=6.255,并且得到当前上限2.5
c:再次向下折半:2.5/2=1.25
d:平方校验:1.25*1.25=1.56255,得到当前下限1.25
e:再次折半:2.5-(2.5-1.25)/2=1.875
f:平方校验:1.875*1.875=3.5156255,得到当前下限1.875
每次得到当前值和5进行比较,并且记下下下限和上限,依次迭代,逐渐逼近平方根:
代码如下:
import math
from math import sqrt
def sqrt_binary(num):
x=sqrt(num)
y=num/2.0
low=0.0
up=num*1.0
count=1
while abs(y-x)0.00000001:
print count,y
count+=1
if (y*ynum):
up=y
y=low+(y-low)/2
else:
low=y
y=up-(up-y)/2
return y
print(sqrt_binary(5))
print(sqrt(5))
2:牛顿迭代
仔细思考一下就能发现,我们需要解决的问题可以简单化理解。
从函数意义上理解:我们是要求函数f(x) = x²,使f(x) = num的近似解,即x² - num = 0的近似解。
从几何意义上理解:我们是要求抛物线g(x) = x² - num与x轴交点(g(x) = 0)最接近的点。
我们假设g(x0)=0,即x0是正解,那么我们要做的就是让近似解x不断逼近x0,这是函数导数的定义:
从几何图形上看,因为导数是切线,通过不断迭代,导数与x轴的交点会不断逼近x0。
你好:
是的:
Python开方的话:
power(x,1.0/2) #开根号
题主你好,
1.使用math库的sqrt函数:
2.使用内建的pow函数:
3.直接使用 数字**0.5
使用Python中的自带库math、自带函数pow和自带库cmath来对数字进行开根号运算
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。
若a_=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用n√ ̄表示 ,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
可以使用math库
import matha = 4print math.sqrt(4) # 2
也可以直接利用python的**运算符
a = 8a**(1/3) # 开3次方相当于1/3次乘方 结果是2 math中其他常用的数学函数:ceil(x) 取顶floor(x) 取底fabs(x) 取绝对值factorial (x) 阶乘hypot(x,y) sqrt(x*x+y*y)pow(x,y) x的y次方sqrt(x) 开平方log(x)log10(x)trunc(x) 截断取整数部分isnan (x) 判断是否NaN(not a number)degree (x) 弧度转角度radians(x) 角度转弧度
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流