python语音降噪函数 python语音去噪-成都快上网建站

python语音降噪函数 python语音去噪

python中的filter函数怎么用

python filter内建函数

为桃山等地区用户提供了全套网页设计制作服务,及桃山网站建设行业解决方案。主营业务为网站制作、成都网站制作、桃山网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

filter函数是python内建函数,可以操作任何可迭代类型,如list,tuple,string.

filter需要带上一个函数function和一个可迭代序列作为参数。filter()将调用该function作用于每一个可迭代序列的元素,并返回一个由该function验证后返回值为true的元素组成新的可迭代序列,新序列的类型保持与filter参数序列的类型一致

2.filter与数字

下面用这个例子来说明:

#建个数字列表

numbers = [1,5,9,8,4,6,3,7]

#定义一个过滤标准,取小于5的数

def lessThanFive(element):

return element  5

print filter(lessThanFive, numbers)

输出结果是列表:[1,4,3]

解说:此处的过滤函数lessThanFive必需带入一个参数(filter()会调用lessThanFive,参数是列表nembers中的每一个元素,一次一个)。filter()返回所有值都是小于5的列表

3.filter与字符串

下面用如下例子说明:

#定义元组类型

names = ('Jack', 'Jill, 'Steve', '')

#筛选出名字

new_names = filter(None, names)

print new_names

输出结果是元组:

('Jack', 'Jill, 'Steve')

在元组names最后一个名字是空字符串,而filter的第一个参数是None,这说明需要使用identity函数(该函数是简单的返回该元素的)

因为python对空字符串,0和None作为False,所以上面的filter的语句就是移除空元素。

4.filter和函数

目的:找出以J开头的名字

def startsWithJ(element):

if element:

return element[0] == 'J'

return False

j_names = filter(startsWithJ, names)

print j_names

输出结果是元组:('Jack', 'Jill')

注意到了吗,上面的2个结果都是tuple而不是list,再一次说明fliter的返回值类型与参数序列的类型保持一致

python内置函数有哪些

python常见的内置函数有:

1. abs()函数返回数字的绝对值。

2. all() 函数用于判断给定的参数中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False 外都算 True;空元组、空列表返回值为True。

3. any() 函数用于判断给定的参数是否全部为False,是则返回False,如果有一个为True,则返回True。 元素除了是 0、空、False外都算 TRUE。

4. bin()函数返回一个整数int或者长整数long int的二进制表示。

5. bool() 函数用于将给定参数转换为布尔类型,如果参数不为空或不为0,返回True;参数为0或没有参数,返回False。

6. bytearray()方法返回一个新字节数组。这个数组里的元素是可变的,并且每个元素的值范围: 0 = x 256(即0-255)。即bytearray()是可修改的二进制字节格式。

7. callable()函数用于检查一个对象是否可调用的。对于函数、方法、lambda函式、类以及实现了 __call__ 方法的类实例, 它都返回 True。(可以加括号的都可以调用)

8. chr()函数用一个范围在range(256)内(即0~255)的整数作参数,返回一个对应的ASCII数值。

9. dict()函数用来将元组/列表转换为字典格式。

10. dir()函数不带参数时,返回当前范围内的变量、方法和定义的类型列表;带参数时,返回参数的属性、方法列表。

扩展资料:

如何查看python3.6的内置函数?

1、首先先打开python自带的集成开发环境IDLE;

2、然后我们直接输入"dir(__builtins__)",需要注意的是builtins左右的下划线都是两个;

3、回车之后我们就可以看到python所有的内置函数;

4、接下来我们学习第二种查看python内置函数的方法,我们直接在IDLE中输入"import builtins",然后输入"dir(builtins)";

5、然后回车,同样的这个方法也可以得到所有的python内置的函数;

6、这里我们可以使用python内置函数len()来查看python内置函数的个数,这里我们直接输入"len(dir(builtins))";

7、回车之后我们可以看到系统返回值153,说明我们现在这个版本中有153个内置函数;

8、最后我们介绍一个比较有用的内置函数"help",python内置函数有一百多个,我们当然不能记住所有的函数,这里python提供了一个"help"函数,我们来看一个例子一起来体会一下help函数的用法,这里我们直接输入"help(len)",然后回车,会看到系统给我们对于内置函数"len"的解释,当然对于其他函数可能会有更加详细的解释以及用法提示。

python中eval的用法

python中eval函数用法如下:

1、计算字符串中有效的表达式,并返回结果。

2、将字符串转成相应的对象(如list、tuple、dict和string之间的转换)。

3、将利用反引号转换的字符串再反转回对象。

函数作用域:eval()函数并不会创建一个新的作用域,并且它的作用域就是它所在的作用域,有时候需要将eval()函数的作用域设置为全局,当然可以将eval()在全局作用域中使用,这个时候可以用window.eval()的方式实现。

参数情况:

(1)如果参数是一个表达式,eval() 函数将执行表达式。

(2)如果参数是Javascript语句,eval()将执行 Javascript 语句。

注意:如果执行结果是一个值就返回,不是就返回undefined,如果参数不是一个字符串,则直接返回该参数。

Python 简单的扩音,音频去噪,静音剪切

数字信号是通过对连续的模拟信号采样得到的离散的函数。它可以简单看作一个以时间为下标的数组。比如,x[n],n为整数。比如下图是一个正弦信号(n=0,1, ..., 9):

对于任何的音频文件,实际上都是用这种存储方式,比如,下面是对应英文单词“skip”的一段信号(只不过由于点太多,笔者把点用直线连接了起来):

衡量数字信号的 能量(强度) ,只要简单的求振幅平方和即可:

我们知道,声音可以看作是不同频率的正弦信号叠加。那么给定一个声音信号(如上图),怎么能够知道这个信号在不同频率区段上的强度呢?答案是使用离散傅里叶变换。对信号x[n], n=0, ..., N-1,通常记它的离散傅里叶变换为X[n],它是一个复值函数。

比如,对上述英文单词“skip”对应的信号做离散傅里叶变换,得到它在频域中的图像是:

可以看到能量主要集中在中低音部分(约16000Hz以下)。

在频域上,也可以计算信号的强度,因为根据Plancherel定理,有:

对于一般的语音信号,长度都至少在1秒以上,有时候我们需要把其中比如25毫秒的一小部分单独拿出来研究。将一个信号依次取小段的操作,就称作分帧。技术上,音频分帧是通过给信号加一系列的 窗 函数 实现的。

我们把一种特殊的函数w[n],称作窗函数,如果对所有的n,有0=w[n]=1,且只有有限个n使得w[n]0。比如去噪要用到的汉宁窗,三角窗。

汉宁窗

三角窗

我们将平移的窗函数与原始信号相乘,便得到信号的“一帧”:

w[n+d]*x[n]

比如用长22.6毫秒的汉宁窗加到“skip”信号大约中间部位上,得到一帧的信号:

可见除一有限区间之外,加窗后的信号其他部分都是0。

对一帧信号可以施加离散傅里叶变换(也叫短时离散傅里叶变换),来获取信号在这一帧内(通常是很短时间内),有关频率-能量的分布信息。

如果我们把信号按照上述方法分成一帧一帧,又将每一帧用离散傅里叶变换转换到频域中去,最后将各帧在频域的图像拼接起来,用横坐标代表时间,纵坐标代表频率,颜色代表能量强度(比如红色代表高能,蓝色代表低能),那么我们就构造出所谓 频谱图 。比如上述“skip”发音对应的信号的频谱图是:

(使用5.8毫秒的汉宁窗)

从若干帧信号中,我们又可以恢复出原始信号。只要我们适当选取窗口大小,以及窗口之间的平移距离L,得到 ..., w[n+2L], w[n+L], w[n], w[n-L], w[n-2L], ...,使得对k求和有:

从而简单的叠加各帧信号便可以恢复出原始信号:

最后,注意窗函数也可以在频域作用到信号上,从而可以起到取出信号的某一频段的作用。

下面简单介绍一下3种音效。

1. 扩音

要扩大信号的强度,只要简单的增大信号的“振幅”。比如给定一个信号x[n],用a1去乘,便得到声音更大的增强信号:

同理,用系数0a1去乘,便得到声音变小的减弱信号。

2. 去噪(降噪)

对于白噪音,我们可以简单的用“移动平均滤波器”来去除,虽然这也会一定程度降低声音的强度,但效果的确不错。但是,对于成分较为复杂,特别是频段能量分布不均匀的噪声,则需要使用下面的 噪声门 技术,它可以看作是一种“多带通滤波器”。

这个特效的基本思路是:对一段噪声样本建模,然后降低待降噪信号中噪声的分贝。

更加细节的说,是在信号的若干频段f[1], ..., f[M]上,分别设置噪声门g[1], ..., g[M],每个门都有一个对应的阈值,分别是t[1], ..., t[M]。这些阈值时根据噪声样本确定的。比如当通过门g[m]的信号强度超过阈值t[m]时,门就会关闭,反之,则会重新打开。最后通过的信号便会只保留下来比噪声强度更大的声音,通常也就是我们想要的声音。

为了避免噪声门的开合造成信号的剧烈变动,笔者使用了sigmoid函数做平滑处理,即噪声门在开-关2个状态之间是连续变化的,信号通过的比率也是在1.0-0.0之间均匀变化的。

实现中,我们用汉宁窗对信号进行分帧。然后对每一帧,又用三角窗将信号分成若干频段。对噪声样本做这样的处理后,可以求出信号每一频段对应的阈值。然后,又对原始信号做这样的处理(分帧+分频),根据每一帧每一频段的信号强度和对应阈值的差(diff = energy-threshold),来计算对应噪声门的开合程度,即通过信号的强度。最后,简单的将各频段,各帧的通过信号叠加起来,便得到了降噪信号。

比如原先的“skip”语音信号频谱图如下:

可以看到有较多杂音(在高频,低频段,蓝色部分)。采集0.25秒之前的声音作为噪声样本,对信号作降噪处理,得到降噪后信号的频谱图如下:

可以明显的看到大部分噪音都被清除了,而语音部分仍完好无损,强度也没有减弱,这是“移动平均滤波器”所做不到的。

3. 静音剪切

在对音频进行上述降噪处理后,我们还可以进一步把多余的静音去除掉。

剪切的原理十分简单。首先用汉宁窗对信号做分帧。如果该帧信号强度过小,则舍去该帧。最后将保留的帧叠加起来,便得到了剪切掉静音部分的信号。

比如,对降噪处理后的“skip”语音信号做静音剪切,得到的新信号的频谱图为:

python中eval是干嘛的

以python 3.8.5150.0版本为例,python中eval函数作用如下:

1、计算字符串中有效的表达式,并返回结果。

2、将字符串转成相应的对象(如list、tuple、dict和string之间的转换)。

3、将利用反引号转换的字符串再反转回对象。

参数解析:

expression:这个参数是一个字符串,python会使用globals字典和locals字典作为全局和局部的命名空间,将expression当作一个python表达式进行解析和计算。

globals:这个参数控制的是一个全局的命名空间,也就是我们在计算表达式的时候可以使用全局的命名空间中的函数,如果这个参数被提供了。

并且没有提供自定义的builtins(python的内建模块),那么会将当前环境中的builtins拷贝到提供的globals里,然后进行计算。如果globals没有被提供,则使用python的全局命名空间。

locals:这个参数控制的是一个局部的命名空间,和globals类似,不过当它和globals中有重复的部分时,locals里的定义会覆盖掉globals中的,也就是说当globals和locals中有冲突的部分时,locals说了算,它有决定权,以它的为准。如果locals没有被提供的话,则默认为globals。

python 8个常用内置函数解说

8个超好用内置函数set(),eval(),sorted(),reversed(),map(),reduce(),filter(),enumerate()

python中有许多内置函数,不像print那么广为人知,但它们却异常的强大,用好了可以大大提高代码效率。

这次来梳理下8个好用的python内置函数

1、set()

当需要对一个列表进行去重操作的时候,set()函数就派上用场了。

用于创建一个集合,集合里的元素是无序且不重复的。集合对象创建后,还能使用并集、交集、差集功能。

2、eval()之前有人问如何用python写一个四则运算器,输入字符串公式,直接产生结果。用eval()来做就很简单:eval(str_expression)作用是将字符串转换成表达式,并且执行。

3、sorted()在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序。这时候就需要用到sorted() ,它可以对任何可迭代对象进行排序,并返回列表。对列表升序操作:

对元组倒序操作:

使用参数:key,根据自定义规则,按字符串长度来排序:

根据自定义规则,对元组构成的列表进行排序:

4、reversed()如果需要对序列的元素进行反转操作,reversed()函数能帮到你。reversed()接受一个序列,将序列里的元素反转,并最终返回迭代器。

5、map()做文本处理的时候,假如要对序列里的每个单词进行大写转化操作。这个时候就可以使用map()函数。

map()会根据提供的函数,对指定的序列做映射,最终返回迭代器。也就是说map()函数会把序列里的每一个元素用指定的方法加工一遍,最终返回给你加工好的序列。举个例子,对列表里的每个数字作平方处理:

6、reduce()前面说到对列表里的每个数字作平方处理,用map()函数。那我想将列表里的每个元素相乘,该怎么做呢?这时候用到reduce()函数。

reduce()会对参数序列中元素进行累积。第一、第二个元素先进行函数操作,生成的结果再和第三个元素进行函数操作,以此类推,最终生成所有元素累积运算的结果。再举个例子,将字母连接成字符串。

你可能已经注意到,reduce()函数在python3里已经不再是内置函数,而是迁移到了functools模块中。这里把reduce()函数拎出来讲,是因为它太重要了。

7、filter()一些数字组成的列表,要把其中偶数去掉,该怎么做呢?

filter()函数轻松完成了任务,它用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象。filter()函数和map()、reduce()函数类似,都是将序列里的每个元素映射到函数,最终返回结果。我们再试试,如何从许多单词里挑出包含字母w的单词。

8、enumerate()这样一个场景,同时打印出序列里每一个元素和它对应的顺序号,我们用enumerate()函数做做看。

enumerate翻译过来是枚举、列举的意思,所以说enumerate()函数用于对序列里的元素进行顺序标注,返回(元素、索引)组成的迭代器。再举个例子说明,对字符串进行标注,返回每个字母和其索引。


文章名称:python语音降噪函数 python语音去噪
文章位置:http://kswjz.com/article/hiesop.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流