扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
在python中用于生成随机数的模块是random,在使用前需要import
我们提供的服务有:成都网站制作、网站建设、微信公众号开发、网站优化、网站认证、复兴ssl等。为成百上千家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的复兴网站制作公司
random.random:
random.random():生成一个0-1之间的随机浮点数.例:
[python] view plain copy
import random
print random.random()
# 0.87594424128
random.uniform
random.uniform(a, b):生成[a,b]之间的浮点数.例:
[python] view plain copy
import random
print random.uniform(0, 10)
# 5.27462570463
random.ranint
random.randint(a, b):生成[a,b]之间的整数.例:
[python] view plain copy
import random
print random.randint(0, 10)
# 8
random.randrange
random.randrange(a, b, step):在指定的集合[a,b)中,以step为基数随机取一个数.如random.randrange(0, 20, 2),相当于从[0,2,4,6,...,18]中随机取一个.例:
[python] view plain copy
import random
print random.randrange(0, 20, 2)
# 14
python中,“random()”是random库中用于生成随机小数的函数。
python中用于生成伪随机数的函数库是random,因为是标准库,使用时候只需要import random;random库包含两类函数,常用的共8个:
基本随机函数:seed(),random()
扩展随机函数:randint(),getrandbits(),uniform(),randrange(),choice(),shuffle()
扩展资料:
random库采用梅森旋转算法(Mersennne Twister)生成伪随机数序列,可用于除随机性要求更高的加解密算法外的大多数工程应用。
使用random库的主要目的是生成随机数;该库提供了不同类型的随机数函数,所有函数都是基于最基本的random.random()函数扩展实现。
#导入随机数模块
import random
#定义一个空的数组,用作取样表
reList = []
#为取样表赋值,1~100
for i in range(1,101):
reList.append(i)
#使用sample方法,取3个随机数
res = random.sample(reList,k=3)
print("三个随机数是:{}".format(res))
Python中random模块包含了生成随机数的常用函数,random模块不能直接访问,需要导入random 模块(import random)。常见的random函数包含如下几个,( 我使用的是jupyter notebook) 。
用python生成随机的15行6列的随机数据的方法如下:
1.import numpy as np # 定义从正态分布中获取随机数的函数 def get_normal_random_number(loc, scale): """ :param loc: 正态分布的均值 :param scale: 正态分布的标准差 :return:从正态分布中产生的随机数 """ # 正态分布中的随机数生成 number = np.random.normal(loc=loc, scale=scale) # 返回值 return number # 主模块 if __name__ == "__main__": # 函数调用 n = get_normal_random_number(loc=2, scale=2) # 打印结果 print(n) # 结果:3.275192443463058
2 从给定参数的均匀分布中获取随机数的函数
考虑从均匀分布中获取随机数的时候,要事先知道均匀分布的下界和上界,然后调用Numpy模块的random.uniform函数生成随机数。
import numpy as np # 定义从均匀分布中获取随机数的函数 def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number # 主模块 if __name__ == "__main__": # 函数调用 n = get_uniform_random_number(low=2, high=4) # 打印结果 print(n) # 结果:2.4462417140153114
3 按照指定概率生成随机数
有时候我们需要按照指定的概率生成随机数,比如已知盒子中每种颜色的球的比例,猜测下一次取出的球的颜色。在这里介绍的问题和上面的例子相似,要求给定一个概率列表,从列表对应的数字列表或区间列表中生成随机数,分两部分讨论。
在Python中,你可以使用 random 模块的 randint() 函数来随机生成指定范围内的整数。例如,要随机生成100内的10个整数,你可以这样写:
==========================
import random # 导入random模块
# 使用random.randint()函数生成10个1到100的整数
for i in range(10):
print(random.randint(1, 100))
==========================
上面的代码将会生成10个1到100之间的随机整数,并依次输出。
如果你想要生成1到20之间的随机整数30个,你可以这样写:
===========================
import random # 导入random模块
# 使用random.randint()函数生成30个1到20的整数
for i in range(30):
print(random.randint(1, 20))
===========================
上面的代码将会生成30个1到20之间的随机整数,并依次输出。
需要注意的是,在Python中,random.randint() 函数生成的随机整数是包含边界值的。所以,上面的代码中,生成的随机整数可能包含1和100,也可能包含1和20。
总之,你可以使用 random.randint() 函数来随机生成指定范围内的整数。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流