扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
学习需要制定详细的计划,计划本身对大家有较强的约束和督促作用,计划对学习既有指导作用,又有推动作用。制定好的 学习计划 ,是提高工作效率的重要手段。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。
创新互联建站坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站制作、成都做网站、外贸营销网站建设、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的柴桑网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!
初二数学知识点
位置与坐标
1、确定位置
在平面内,确定一个物体的位置一般需要两个数据。
2、平面直角坐标系
①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。
③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。
④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。
⑤在直角坐标系中,对于平面上任意一点,都有的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上的一点与它对应。
3、轴对称与坐标变化
关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
八年级 上册数学复习资料
【一次函数】
20.1一次函数的概念
1.一般地,解析式形如ykxb(kb是常数,k0)的函数叫做一次函数;一次函数的定义域是一切实数
2.一般地,我们把函数yc(c为常数)叫做常值函数
20.2一次函数的图像
1.列表、描点、连线
2.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距
3.一般地,直线ykxb(kb是常数,k0)与y轴的交点坐标是(0,b),直线的截距是b
4.一次函数ykxb(b≠0)的图像可以由正比例函数ykx的图像平移得到当b0时,向上平移b个单位,当b0时,向下平移b的绝对值个单位
5.一元一次不等式与一次函数之间的关系(看图)
20.3一次函数的性质
1.一次函数ykxb(kb是常数,k?0)具有以下性质:
当k0时,函数值y随自变量x的值增大而增大
当k0时,函数值y随自变量x的值增大而减小
①如图所示,当k0,b0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当k0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图所示,当k﹤O,b0时,直线经过第一、二、四象限(直线不经过第三象限);
④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).20.4一次函数的应用
1.利用一次函数及图像解决实际问题
初二数学 复习 方法
按部就班
数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
强调理解
概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
基本训练
学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。
重视错误
订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。
平时的数学学习:
○1课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.
○2让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.
○3课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.
○4单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的 总结 和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.
初二数学沪科版上册知识点相关 文章 :
★ 初二数学知识点总结沪科版
★ 沪科版八年级数学上册知识点
★ 八年级数学沪科版知识点
★ 沪科版八年级数学的知识点
★ 沪科版八年级上册数学知识提纲
★ 八年级上册数学沪科版复习提纲
★ 沪科版八年级上册数学复习提纲
★ 沪科版八年级上册数学提纲
★ 初中数学知识点总结(沪科版)
★ 八年级数学知识点整理
一.常量、变量:
在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:
函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
三、函数中自变量取值范围的求法:
(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义 :一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.
五、用描点法画函数的图象的一般步骤
1、列表(表中给出一些自变量的值及其对应的函数值。)
注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:
(1)列表法(2)图像法(3)解析式法
七、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.
当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.
八、正比例函数的图象与性质:
(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。
(2)性质:当k0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0时,直线y=kx经过二,四象限,从左向右下降,即随着x的增大y反而减小。
单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的`每一项相乘,再把所得的积相加.
单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.
3、因式分解:
因式分解的定义.
把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系.
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.
九、求函数解析式的方法:
待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1.一次函数与一元一次方程:从“数”的角度看x为何值时函数y=ax+b的值为0.
2.求ax+b=0(a,b是常数,a≠0)的解,从“形”的角度看,求直线y=ax+b与x轴交点的横坐标
3.一次函数与一元一次不等式:
解不等式ax+b0(a,b是常数,a≠0).从“数”的角度看,x为何值时函数y=ax+b的值大于0.
4.解不等式ax+b0(a,b是常数,a≠0).从“形”的角度看,求直线y=ax+b在x轴上方的部分(射线)所对应的的横坐标的取值范围.
十、一次函数与正比例函数的图象与性质
以上内容由独家专供,希望这篇初二数学知识点之一次函数知识点讲解能够帮助到大家。
1.勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾——最短的边、股——较长的直角边、弦——斜边。
勾股定理又叫毕达哥拉斯定理
2.勾股定理的逆定理:
如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。即
3.勾股数:
满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5;5、12、13;7、24、25;8、15、17。
4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用
例题精讲:
例1:若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为
解析:可知三边长度为3,4,5,因此周长为12
(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为
解析:可知三边长度为6,8,10,则周长为24
例2:已知直角三角形的两边长分别为3、4,求第三边长.
解析:第一种情况:当直角边为3和4时,则斜边为5
第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7
《点评》此题是一道易错题目,同学们应该认真审题!
例3:一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()
A.斜边长为25
B.三角形周长为25
C.斜边长为5
D.三角形面积为20
解析: 根据勾股定理,可知斜边长度为5,选择C
初二数学知识点精讲:简析勾股定理就为大家介绍到这里了,希望大家都能养成善于总结的好习惯。
初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,就等于中考中数学成功了一大半。以下是我分享给大家的初中函数知识点归纳,希望可以帮到你!
初中函数知识点归纳
一、函数
(1)定义:设在某变化过程中有两个变量x、y,对于x的每一个值,y都有唯一的值与之对应,那么就说x是自变量,y是因变量,此时,也称y是x的函数。
(2)本质:一一对应关系或多一对应关系。
有序实数对 平面直角坐标系上的点
(3)表示方法:解析法、列表法、图象法。
(4)自变量取值范围:
对于实际问题,自变量取值必须使实际问题有意义;
对于纯数学问题,自变量取值必须保证函数关系式有意义:
①分式中,分母≠0;
②二次根式中,被开方数≥0;
③整式中,自变量取全体实数;
④混合运算式中,自变量取各解集的公共部份。
二、正比例函数与反比例函数
两函数的异同点
二、一次函数(图象为直线)
(1)定义式:y=kx+b (k、b为常数,k≠0);自变量取全体实数。
#FormatTableID_6#
(2)性质:
①k0,过第一、三象限,y随x的增大而增大;
k0,过第二、四象限,y随x的增大而减小。
②b=0,图象过(0,0);
b0,图象与y轴的交点(0,b)在x轴上方;
b0,图象与y轴的交点(0,b)在x轴下方。
三、二次函数(图象为抛物线)
(1)自变量取全体实数
一般式:y=ax2+bx+c (a、b、c为常数,a≠0),其中(0,c)为抛物线与y轴的交点;
顶点式:y=a(x—h)2+k (a、h、k为常数,a≠0),其中(h,k)为抛物线顶点;
h=- ,k= 零点式:y=a(x—x1)(x—x2)(a、x1、x2为常数,a≠0) 其中(x1,0)、(x2,0)为抛物线与x轴的交点。x1、x2 = (b 2 -4ac ≥0 )
(2)性质:
①对称轴:x=- 或x=h;
②顶点:(- , )或(h,k);
③最值:当x=- 时,y有最大(小)值,为 或当x=h时,y有最大(小)值,为k ;
初中数学学习攻略
1.读的方法。同学们往往不善于读数学书,在读的过程中,易沿用死记硬背的方法。那么如何有效地读数学书呢?平时应做到:
一是粗读。先粗略浏览教材的枝干,并能粗略掌握本章节知识的概貌,重、难点;
二是细读。对重要的概念、性质、判定、公式、法则、思想方法等反复阅读、体会、思考,领会其实质及其因果关系,并在不理解的地方作上记号(以便求教);
三是研读。要研究知识间的内在联系,研讨书本知识安排意图,并对知识进行分析、归纳、总结,以形成知识体系,完善认知结构。
读书,先求读懂,再求读透,使得自学能力和实际应用能力得到很好的训练。
2.听的方法。“听”是直接用感官去接受知识,而初中同学往往对课程增多、课堂学习量加大不适应,顾此失彼,精力分散,使听课效果下降。因此应在听课程时注意做到:
(1)听每节课的学习要求;
(2)听知识的引入和形成过程;
(3)听懂教学中的重、难点(尤其是预习中不理解的或有疑问的知识点);
(4)听例题关键部分的提示及应用的数学思想方法;
(5)做好课后小结。
3.思考的方法。“思”指同学的思维。数学是思维的体操,学习离不开思维,数学更离不开思维活动,善于思考则学得活,效率高;不善于思考则学得死,效果差。可见,科学的思维方法是掌握好知识的前提。七年级学生的思维往往还停留在小学的思维中,思维狭窄。因此在学习中要做到:
(1)敢于思考、勤于思考、随读随思、随听随思。在看书、听讲、练习时要多思考;
(2)善于思考。会抓住问题的关键、知识的重点进行思考;
(3)反思。要善于从回顾解题策略、方法的优劣进行分析、归纳、总结。
4.问的方法。孔子曰:“敏而好学,不耻不问。”爱因斯坦说过:“提出问题比解决问题更重要。”问能解惑,问能知新,任何学科的学习无不是从问题开始的。因此,同学在平时学习中应掌握问问题的一些方法,主要有:
(1)追问法。即在某个问题得到回答后,顺其思路对问题紧追不舍,刨根到底继续发问;
(2)反问法。根据教材和教师所讲的内容,从相反的方向把问题提出来;
(3)类比提问法。据某些相似的概念、定理、性质等的相互关系,通过比较和类推提出问题;
(4)联系实际提问法。结合某些知识点,通过对实际生活中一些现象的观察和分析提出问题。
此外,在提问时不仅要问其然,还要问其所以然。
5.记笔记的方法。很大一部分学生认为数学没有笔记可记,有记笔记的学生也是记得不够合理。通常是教师在黑板上所写的都记下来,用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此,学生作笔记时应做到以下几点:
(1)在“听”,“思”中有选择地记录;
(2)记学习内容的要点,记自己有疑问的疑点,记书中没有的知识及教师补充的知识点;
(3)记解题思路、思想方法;
(4)记课堂小结。明确笔记是为补充“听”“思”的不足,是为最后复习准备的,好的笔记能使复习达到事倍功半的效果。
正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践。所以暑期期间每天给自己一些时间学习数学是很有必要的。
初中数学学习方法
1课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.
2让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.
3课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.
4单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.
猜你喜欢:
1. 高考必备数学公式知识点知识归纳
2. 中考物理必考知识点归纳
3. 初二函数知识点
4. 初三数学函数知识点
5. 《集合与函数概念》知识点汇总
1、函数如何定义,函数有什么分类,函数的基本语法知识,函数编写常见的错误。
2、记住一些常用的函数,其他的函数需要用到的时候查表就ok了。
c语言的函数知识其实不难(个人认为),难点在c语言的指针(指针是c语言的灵魂,学不好等于没学c语言)指针和数组、指针和函数、指针和结构体、动态内存分配等混合内容知识比较难,并且c语言循环控制一定要会。楼上所说的链表,需要学习数据结构这门课。
希望能帮助到楼主
知识点总结
一.函数的相关概念:
1.变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,保持不变的量叫做常量。
注意:变量和常量往往是相对而言的,在不同研究过程中,常量和变量的身份是可以相互转换的.
在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
说明:函数体现的是一个变化的过程,在这一变化过程中,要着重把握以下三点:
(1)只能有两个变量.
(2)一个变量的数值随另一个变量的数值变化而变化.
(3)对于自变量的每一个确定的值,函数都有唯一的值与之对应.
二.函数的表示方法和函数表达式的确定:
函数关系的表示方法有三种:
1..解析法:两个变量之间的关系,有时可以用一个含有这两个变量的等式表示,这种表示方法叫做解析法.用解析法表示一个函数关系时,因变量y放在等式的左边,自变量y的代数式放在右边,其实质是用x的代数式表示y;
注意:解析法简单明了,能准确地反映整个变化过程中自变量与因变量的关系,但不直观,且有的函数关系不一定能用解析法表示出来.
2.列表法:把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系的方法叫列表法;
注意:列表法优点是一目了然,使用方便,但其列出的对应值是有限的,而且从表中不易看出自变量和函数之间的对应规律。
3..图象法:用图象表示函数关系的方法叫做图象法.图象法形象直观,是研究函数的一种很重要的方法。
三.函数(或自变量)值、函数自变量的取值范围
2.函数求值的几种形式:
(1)当函数是用函数表达式表示时,示函数的值,就是求代数式的值;
(2)当已知函数值及表达式时,赌注相应自变量的值时,其实质就是解方程;
(3)当给定函数值的取值范围,求相应的自变量的取值范围时,其实质就是解不等式(组)。
3..函数自变量的取值范围是指使函数有意义的自变量的取值的全体.求自变量的取值范围通常从两个方面考虑:一是要使函数的解析式有意义;二是符合客观实际.下面给出一些简单函数解析式中自变量范围的确定方法.
(1)当函数的解析式是整式时,自变量取任意实数(即全体实数);
(2)当函数的解析式是分式时,自变量取值是使分母不为零的任意实数;
(3)当函数的解析式是开平方的无理式时,自变量取值是使被开方的式子为非负的实数;
(4)当函数解析式中自变量出现在零次幂或负整数次幂的底数中时,自变量取值是使底数不为零的实数。
说明:当函数表达式表示实际问题或几何问题时,自变量取值范围除应使函数表达式有意义外,还必须符合实际意义或几何意义。
在一个函数关系式中,如果同时有几种代数式时,函数自变量取值范围应是各种代数式中自变量取值范围的公共部分。
四.函数的图象
1.函数图象的画法
确定了函数解析式,要画出函数的图象。一般分为以下三个步骤:
(1)列表:取自变量的一些值,计算出对应的函数值,由这一系列的对应值得到一系列的有序实数对;
(2)描点:在直角坐标系中,描出这些有序实数对的对应点;
(3)连线:用平滑的曲线依次把这些点连起来,即可得到这个函数的图象。
这些是我们老师讲过的复习提纲,希望对你有所帮助!
常见考法:(1)考查函数的概念;
(2)求函数值或自变量的取值范围。
临近考试了,各科都会整理好知识点复习。接下来是我为大家整理的初二数学知识点归纳,希望大家喜欢!
初二数学知识点归纳一
第十一章 三角形
一、知识框架:
二、知识概念:
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,
13、公式与性质:
⑴三角形的内角和:三角形的内角和为180°
⑵三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
⑶多边形内角和公式:边形的内角和等于·180°
⑷多边形的外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角
线,把多边形分成个三角形。②边形共有条对角线。
第十二章 全等三角形
一、知识框架:
二、知识概念:
1、基本定义:
⑴全等形:能够完全重合的两个图形叫做全等形。
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。
⑷对应边:全等三角形中互相重合的边叫做对应边。
⑸对应角:全等三角形中互相重合的角叫做对应角。
2、基本性质:
⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。
3、全等三角形的判定定理:
⑴边边边():三边对应相等的两个三角形全等。
⑵边角边():两边和它们的夹角对应相等的两个三角形全等。
⑶角边角():两角和它们的夹边对应相等的两个三角形全等。
⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等。
⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线:
⑴画法:
⑵性质定理:角平分线上的点到角的两边的距离相等。
⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。
5、证明的基本 方法 :
⑴明确命题中的已知和求证。(包括隐含条件,如公共边、公共角、对顶
角、角平分线、中线、高、等腰三角形等所隐含的边角关系)
⑵根据题意,画出图形,并用数字符号表示已知和求证。
⑶经过分析,找出由已知推出求证的途径,写出证明过程。
第十三章 轴对称
一、知识框架:
二、知识概念:
1、基本概念:
⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一
个图形重合,那么就说这两个图形关于这条直线对称。
⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
⑷等腰三角形:有两条边相等的三角形叫做等腰三角形。相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
⑸等边三角形:三条边都相等的三角形叫做等边三角形。
2、基本性质:
⑴对称的性质:
①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。
②对称的图形都全等。
⑵线段垂直平分线的性质:
①线段垂直平分线上的点与这条线段两个端点的距离相等。
②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。
⑶关于坐标轴对称的点的坐标性质
⑷等腰三角形的性质:
①等腰三角形两腰相等。
②等腰三角形两底角相等(等边对等角)。
③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合。
④等腰三角形是轴对称图形,对称轴是三线合一(1条)。
⑸等边三角形的性质:
①等边三角形三边都相等。
②等边三角形三个内角都相等,都等于60°
③等边三角形每条边上都存在三线合一。
④等边三角形是轴对称图形,对称轴是三线合一(3条)。
3、基本判定:
⑴等腰三角形的判定:
①有两条边相等的三角形是等腰三角形。
②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对
等边)。
⑵等边三角形的判定:
①三条边都相等的三角形是等边三角形。
②三个角都相等的三角形是等边三角形。
③有一个角是60°的等腰三角形是等边三角形。
4、基本方法:
⑴做已知直线的垂线:
⑵做已知线段的垂直平分线:
⑶作对称轴:连接两个对应点,作所连线段的垂直平分线。
⑷作已知图形关于某直线的对称图形:
⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。
初二数学知识点归纳二
1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:
(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)。
4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°。
7.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形。
有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
初二数学知识点归纳三
数据的收集、整理与描述
一.知识框架
二.知识概念
1.全面调查:考察全体对象的调查方式叫做全面调查.
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查.
3.总体:要考察的全体对象称为总体.
4.个体:组成总体的每一个考察对象称为个体.
5.样本:被抽取的所有个体组成一个样本.
6.样本容量:样本中个体的数目称为样本容量.
7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数.
8.频率:频数与数据总数的比为频率.
9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距.
初二数学知识点归纳四
数的开方
1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.
2.平方根的性质:
(1)正数的平方根是一对相反数;
(2)0的平方根还是0;
(3)负数没有平方根.
3.平方根的表示方法:a的平方根表示为 和 .注意: 可以看作是一个数,也可以认为是一个数开二次方的运算.
4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为 .注意:0的算术平方根还是0.
5.三个重要非负数: a2≥0 ,|a|≥0 , ≥0 .注意:非负数之和为0,说明它们都是0.
6.两个重要公式:
(1) ; (a≥0)
(2) .
7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为 ;即把a开三次方.
8.立方根的性质:
(1)正数的立方根是一个正数;
(2)0的立方根还是0;
(3)负数的立方根是一个负数.
9.立方根的特性: .
10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.
11.实数:有理数和无理数统称实数.
12.实数的分类:(1) (2) .
13.数轴的性质:数轴上的点与实数一一对应.
14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆: .
三角形
几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)
1.三角形的角平分线定义:
三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图) 几何表达式举例:
(1) ∵AD平分∠BAC
∴∠BAD=∠CAD
(2) ∵∠BAD=∠CAD
∴AD是角平分线
2.三角形的中线定义:
在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)
几何表达式举例:
(1) ∵AD是三角形的中线
∴ BD = CD
(2) ∵ BD = CD
∴AD是三角形的中线
3.三角形的高线定义:
从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.
(如图)
几何表达式举例:
(1) ∵AD是ΔABC的高
∴∠ADB=90°
(2) ∵∠ADB=90°
∴AD是ΔABC的高
※4.三角形的三边关系定理:
三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)
几何表达式举例:
(1) ∵AB+BCAC
∴……………
(2) ∵ AB-BC
∴……………
5.等腰三角形的定义:
有两条边相等的三角形叫做等腰三角形. (如图)
几何表达式举例:
(1) ∵ΔABC是等腰三角形
∴ AB = AC
(2) ∵AB = AC
∴ΔABC是等腰三角形
6.等边三角形的定义:
有三条边相等的三角形叫做等边三角形. (如图)
几何表达式举例:
(1)∵ΔABC是等边三角形
∴AB=BC=AC
(2) ∵AB=BC=AC
∴ΔABC是等边三角形
7.三角形的内角和定理及推论:
(1)三角形的内角和180°;(如图)
(2)直角三角形的两个锐角互余;(如图)
(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)
※(4)三角形的一个外角大于任何一个和它不相邻的内角.
(1) (2) (3)(4) 几何表达式举例:
(1) ∵∠A+∠B+∠C=180°
∴…………………
(2) ∵∠C=90°
∴∠A+∠B=90°
(3) ∵∠ACD=∠A+∠B
∴…………………
(4) ∵∠ACD ∠A
∴…………………
初二数学知识点归纳五
一次函数
(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;
(2)正比例函数图像特征:一些过原点的直线;
(3)图像性质:
①当k0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;
(4)求正比例函数的解析式:已知一个非原点即可;
(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)
(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;
(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)
(8)一次函数图像特征:一些直线;
(9)性质:
①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b0,向上平移;当b0,向下平移)
②当k0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;
③当k0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;
④当b0时,直线y=kx+b与y轴正半轴有交点为(0,b);
⑤当b0时,直线y=kx+b与y轴负半轴有交点为(0,b);
(10)求一次函数的解析式:即要求k与b的值;
(11)画一次函数的图像:已知两点;
用函数观点看方程(组)与不等式
(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;
(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;
(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;
(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;
初二数学知识点归纳相关 文章 :
1.
2. 初二数学上册知识点总结
3. 初二数学知识点总结
4. 初二数学上知识点总结
5. 八年级数学上知识点归纳
6. 初二数学上册知识点全总结
7. 人教版初二上数学知识点归纳
8. 初中数学知识点整理:
9. 初二数学上册知识点梳理
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流