扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
一:几何距(Geometric
创新互联公司服务项目包括克州网站建设、克州网站制作、克州网页制作以及克州网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,克州网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到克州省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
Moments)知识与质心寻找原理
1.
Image
Moments是图像处理中非常有用的算法,可以用来计算区域图像的质心,方向等几何特性,同时Mpq的高阶具有旋转不变性,可以用来实现图像比较分类,正是因为Moments有这些特性,很多手绘油画效果也会基于该算法来模拟实现。它的数学表达为:
它的低阶M00,M01,
M10可以用来计算质心,中心化以后M11,M02,M20可以用来计算区域的方向/角度
2.
什么是质心
就是通过该点,区域达到一种质量上的平衡状态,可能物理学上讲的比较多,简单点的说就是规则几何物体的中心,不规则的可以通过挂绳子的方法来寻找。
二:算法流程
1.
输入图像转换为二值图像
2.
通过连通组件标记算法找到所有的连通区域,并分别标记
3.
对每个连通区域运用计算几何距算法得到质心
4.
用不同颜色绘制连通区域与质心,输出处理后图像
三:算法效果
左边为原图,
右边蓝色为连通组件标记算法处理以后结果,白色点为质心
四:关键代码解析
1.
计算几何距算法代码
doublem00
=
moments(pixels,
width,
height,
0,
0);
doublexCr
=
moments(pixels,
width,
height,
1,
0)
/
m00;//
row
doubleyCr
=
moments(pixels,
width,
height,
0,
1)
/
m00;//
column
return
new
double[]{xCr,
yCr};
前些时候做毕业设计 用java做的数字图像处理方面的东西 这方面的资料ms比较少 发点东西上来大家共享一下 主要就是些算法 有自己写的 有人家的 还有改人家的 有的算法写的不好 大家不要见笑
一 读取bmp图片数据
// 获取待检测图像 数据保存在数组 nData[] nB[] nG[] nR[]中
public void getBMPImage(String source) throws Exception { clearNData(); //清除数据保存区 FileInputStream fs = null; try { fs = new FileInputStream(source); int bfLen = ; byte bf[] = new byte[bfLen]; fs read(bf bfLen); // 读取 字节BMP文件头 int biLen = ; byte bi[] = new byte[biLen]; fs read(bi biLen); // 读取 字节BMP信息头
// 源图宽度 nWidth = (((int) bi[ ] xff) ) | (((int) bi[ ] xff) ) | (((int) bi[ ] xff) ) | (int) bi[ ] xff;
// 源图高度 nHeight = (((int) bi[ ] xff) ) | (((int) bi[ ] xff) ) | (((int) bi[ ] xff) ) | (int) bi[ ] xff;
// 位数 nBitCount = (((int) bi[ ] xff) ) | (int) bi[ ] xff;
// 源图大小 int nSizeImage = (((int) bi[ ] xff) ) | (((int) bi[ ] xff) ) | (((int) bi[ ] xff) ) | (int) bi[ ] xff;
// 对 位BMP进行解析 if (nBitCount == ){ int nPad = (nSizeImage / nHeight) nWidth * ; nData = new int[nHeight * nWidth]; nB=new int[nHeight * nWidth]; nR=new int[nHeight * nWidth]; nG=new int[nHeight * nWidth]; byte bRGB[] = new byte[(nWidth + nPad) * * nHeight]; fs read(bRGB (nWidth + nPad) * * nHeight); int nIndex = ; for (int j = ; j nHeight; j++){ for (int i = ; i nWidth; i++) { nData[nWidth * (nHeight j ) + i] = ( xff) | (((int) bRGB[nIndex + ] xff) ) | (((int) bRGB[nIndex + ] xff) ) | (int) bRGB[nIndex] xff; nB[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex] xff; nG[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ] xff; nR[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ] xff; nIndex += ; } nIndex += nPad; } // Toolkit kit = Toolkit getDefaultToolkit(); // image = kit createImage(new MemoryImageSource(nWidth nHeight // nData nWidth));
/* //调试数据的读取
FileWriter fw = new FileWriter( C:\\Documents and Settings\\Administrator\\My Documents\\nDataRaw txt );//创建新文件 PrintWriter out = new PrintWriter(fw); for(int j= ;jnHeight;j++){ for(int i= ;inWidth;i++){ out print(( * +nData[nWidth * (nHeight j ) + i])+ _ +nR[nWidth * (nHeight j ) + i]+ _ +nG[nWidth * (nHeight j ) + i]+ _ +nB[nWidth * (nHeight j ) + i]+ ); } out println( ); } out close();*/ } } catch (Exception e) { e printStackTrace(); throw new Exception(e); } finally { if (fs != null) { fs close(); } } // return image; }
二 由r g b 获取灰度数组
public int[] getBrightnessData(int rData[] int gData[] int bData[]){ int brightnessData[]=new int[rData length]; if(rData length!=gData length || rData length!=bData length || bData length!=gData length){ return brightnessData; } else { for(int i= ;ibData length;i++){ double temp= *rData[i]+ *gData[i]+ *bData[i]; brightnessData[i]=(int)(temp)+((temp (int)(temp)) ? : ); } return brightnessData; } }
三 直方图均衡化
public int [] equilibrateGray(int[] PixelsGray int width int height) { int gray; int length=PixelsGray length; int FrequenceGray[]=new int[length]; int SumGray[]=new int[ ]; int ImageDestination[]=new int[length]; for(int i = ; i length ;i++) { gray=PixelsGray[i]; FrequenceGray[gray]++; } // 灰度均衡化 SumGray[ ]=FrequenceGray[ ]; for(int i= ;i ;i++){ SumGray[i]=SumGray[i ]+FrequenceGray[i]; } for(int i= ;i ;i++) { SumGray[i]=(int)(SumGray[i]* /length); } for(int i= ;iheight;i++) { for(int j= ;jwidth;j++) { int k=i*width+j; ImageDestination[k]= xFF | ((SumGray[PixelsGray[k]] ) | (SumGray[PixelsGray[k]] ) | SumGray[PixelsGray[k]]); } } return ImageDestination; }
四 laplace 阶滤波 增强边缘 图像锐化
public int[] laplace DFileter(int []data int width int height){ int filterData[]=new int[data length]; int min= ; int max= ; for(int i= ;iheight;i++){ for(int j= ;jwidth;j++){ if(i== || i==height || j== || j==width ) filterData[i*width+j]=data[i*width+j]; else filterData[i*width+j]= *data[i*width+j] data[i*width+j ] data[i*width+j+ ] data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ] data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ]; if(filterData[i*width+j]min) min=filterData[i*width+j]; if(filterData[i*width+j]max) max=filterData[i*width+j]; } }// System out println( max: +max);// System out println( min: +min); for(int i= ;iwidth*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } return filterData; }
五 laplace 阶增强滤波 增强边缘 增强系数delt
public int[] laplaceHigh DFileter(int []data int width int height double delt){ int filterData[]=new int[data length]; int min= ; int max= ; for(int i= ;iheight;i++){ for(int j= ;jwidth;j++){ if(i== || i==height || j== || j==width ) filterData[i*width+j]=(int)(( +delt)*data[i*width+j]); else filterData[i*width+j]=(int)(( +delt)*data[i*width+j] data[i*width+j ]) data[i*width+j+ ] data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ] data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ]; if(filterData[i*width+j]min) min=filterData[i*width+j]; if(filterData[i*width+j]max) max=filterData[i*width+j]; } } for(int i= ;iwidth*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } return filterData; } 六 局部阈值处理 值化
// 局部阈值处理 值化 niblack s method /*原理 T(x y)=m(x y) + k*s(x y) 取一个宽度为w的矩形框 (x y)为这个框的中心 统计框内数据 T(x y)为阈值 m(x y)为均值 s(x y)为均方差 k为参数(推荐 )计算出t再对(x y)进行切割 / 这个算法的优点是 速度快 效果好 缺点是 niblack s method会产生一定的噪声 */ public int[] localThresholdProcess(int []data int width int height int w int h double coefficients double gate){ int[] processData=new int[data length]; for(int i= ;idata length;i++){ processData[i]= ; } if(data length!=width*height) return processData; int wNum=width/w; int hNum=height/h; int delt[]=new int[w*h]; //System out println( w; +w+ h: +h+ wNum: +wNum+ hNum: +hNum); for(int j= ;jhNum;j++){ for(int i= ;iwNum;i++){ //for(int j= ;j ;j++){ // for(int i= ;i ;i++){ for(int n= ;nh;n++) for(int k= ;kw;k++){ delt[n*w+k]=data[(j*h+n)*width+i*w+k]; //System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ ); } //System out println(); /* for(int n= ;nh;n++) for(int k= ;kw;k++){ System out print( data[ +((j*h+n)*width+i*w+k)+ ]: +data[(j*h+n)*width+i*w+k]+ ); } System out println(); */ delt=thresholdProcess(delt w h coefficients gate); for(int n= ;nh;n++) for(int k= ;kw;k++){ processData[(j*h+n)*width+i*w+k]=delt[n*w+k]; // System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ ); } //System out println(); /* for(int n= ;nh;n++) for(int k= ;kw;k++){ System out print( processData[ +((j*h+n)*width+i*w+k)+ ]: +processData[(j*h+n)*width+i*w+k]+ ); } System out println(); */ } } return processData; }
七 全局阈值处理 值化
public int[] thresholdProcess(int []data int width int height double coefficients double gate){ int [] processData=new int[data length]; if(data length!=width*height) return processData; else{ double sum= ; double average= ; double variance= ; double threshold; if( gate!= ){ threshold=gate; } else{ for(int i= ;iwidth*height;i++){ sum+=data[i]; } average=sum/(width*height); for(int i= ;iwidth*height;i++){ variance+=(data[i] average)*(data[i] average); } variance=Math sqrt(variance); threshold=average coefficients*variance; } for(int i= ;iwidth*height;i++){ if(data[i]threshold) processData[i]= ; else processData[i]= ; } return processData; } }
八 垂直边缘检测 sobel算子
public int[] verticleEdgeCheck(int []data int width int height int sobelCoefficients) throws Exception{ int filterData[]=new int[data length]; int min= ; int max= ; if(data length!=width*height) return filterData; try{ for(int i= ;iheight;i++){ for(int j= ;jwidth;j++){ if(i== || i== || i==height || i==height ||j== || j== || j==width || j==width ){ filterData[i*width+j]=data[i*width+j]; } else{ double average; //中心的九个像素点 //average=data[i*width+j] Math sqrt( )*data[i*width+j ]+Math sqrt( )*data[i*width+j+ ] average=data[i*width+j] sobelCoefficients*data[i*width+j ]+sobelCoefficients*data[i*width+j+ ] data[(i )*width+j ]+data[(i )*width+j+ ] data[(i+ )*width+j ]+data[(i+ )*width+j+ ]; filterData[i*width+j]=(int)(average); } if(filterData[i*width+j]min) min=filterData[i*width+j]; if(filterData[i*width+j]max) max=filterData[i*width+j]; } } for(int i= ;iwidth*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } } catch (Exception e) { e printStackTrace(); throw new Exception(e); } return filterData; }
九 图像平滑 * 掩模处理(平均处理) 降低噪声
lishixinzhi/Article/program/Java/hx/201311/26286
《JAVA数字图像处理》百度网盘pdf最新全集下载:
链接:
?pwd=f8sq 提取码: f8sq
简介:在开始本书内容之前,笔者假设你已经有了面向对象语言编程的基本概念,了解Java语言的基本语法与特征,原因在于本书的所有源代码都是基于Java语言实现的,而且是基于Java开发环境运行与演示所有图像处理算法的。本书第1章到第3章是为了帮助读者了解与掌握Java图形与GUI编程的基本知识与概念而写的。本章主要介绍Java GUI编程中基本的图形知识,针对GU1编程,Java语言提供了两套几乎并行的API,分别是Swing与AWT。早期的Java GUJ编程中主要使用AWT的相关组件,但是AWT的功能并不是十分强大,而且严重依赖本地接口。于是在Java 1.3及后续版本中引入了Swing工具实现GUl编程,Swing中的组件大多数都是基于纯Java语言实现的,而不是通过本地组件实现的,所以它们是轻量级的GUI组件,同时Swing对图形与图像的支持操作也有很大的提高与增强。如何区分AWT组件与Swing组件?一个简单而且相当直观的方法是看Class的名称,Swing的组件大多数带有大写的前缀字母J。
public static boolean write(RenderedImage im, String formatName, File output) throws IOException
使用支持给定格式的任意 ImageWriter 将一个图像写入 File。如果已经有一个 File 存在,则丢弃其内容。
参数:im - 要写入的 RenderedImage。
formatName - 包含格式非正式名称的 String。
output - 将在其中写入数据的 File。
返回:如果没有找到合适的 writer,则返回 false。
抛出: IllegalArgumentException - 如果任何参数为 null。
IOException - 如果在写入过程中发生错误。
说白了,就是按指定的formatName把图片存到file(或OutputStream)中。formatName是已注册的、可以保存图片的writer的非正式名称,比如“jpeg”,“tiff”。如果想知道到底有哪些writer在你的机器上被注册了,用ImageIO.getWriterFormatNames(),返回类型是String[] 。同样的,还有读取图片的reader,对应的是ImageIO.getReaderFormatNames()。
最后要说的是,这个方法是保存图片,和上传没有关系。你可能是要上传图片后再保存吧!
Java图像处理技巧四则
下面代码中用到的sourceImage是一个已经存在的Image对象
图像剪切
对于一个已经存在的Image对象,要得到它的一个局部图像,可以使用下面的步骤:
//import java.awt.*;
//import java.awt.image.*;
Image croppedImage;
ImageFilter cropFilter;
CropFilter =new CropImageFilter(25,30,75,75); //四个参数分别为图像起点坐标和宽高,即CropImageFilter(int x,int y,int width,int height),详细情况请参考API
CroppedImage= Toolkit.getDefaultToolkit().createImage(new FilteredImageSource(sourceImage.getSource(),cropFilter));
如果是在Component的子类中使用,可以将上面的Toolkit.getDefaultToolkit().去掉。FilteredImageSource是一个ImageProducer对象。
图像缩放
对于一个已经存在的Image对象,得到它的一个缩放的Image对象可以使用Image的getScaledInstance方法:
Image scaledImage=sourceImage. getScaledInstance(100,100, Image.SCALE_DEFAULT); //得到一个100X100的图像
Image doubledImage=sourceImage. getScaledInstance(sourceImage.getWidth(this)*2,sourceImage.getHeight(this)*2, Image.SCALE_DEFAULT); //得到一个放大两倍的图像,这个程序一般在一个swing的组件中使用,而类Jcomponent实现了图像观察者接口ImageObserver,所有可以使用this。
//其它情况请参考API
灰度变换
下面的程序使用三种方法对一个彩色图像进行灰度变换,变换的效果都不一样。一般而言,灰度变换的算法是将象素的三个颜色分量使用R*0.3+G*0.59+ B*0.11得到灰度值,然后将之赋值给红绿蓝,这样颜色取得的效果就是灰度的。另一种就是取红绿蓝三色中的最大值作为灰度值。java核心包也有一种算法,但是没有看源代码,不知道具体算法是什么样的,效果和上述不同。
/* GrayFilter.java*/
/*@author:cherami */
/*email:cherami@163.net*/
import java.awt.image.*;
public class GrayFilter extends RGBImageFilter {
int modelStyle;
public GrayFilter() {
modelStyle=GrayModel.CS_MAX;
canFilterIndexColorModel=true;
}
public GrayFilter(int style) {
modelStyle=style;
canFilterIndexColorModel=true;
}
public void setColorModel(ColorModel cm) {
if (modelStyle==GrayModel
else if (modelStyle==GrayModel
}
public int filterRGB(int x,int y,int pixel) {
return pixel;
}
}
/* GrayModel.java*/
/*@author:cherami */
/*email:cherami@163.net*/
import java.awt.image.*;
public class GrayModel extends ColorModel {
public static final int CS_MAX=0;
public static final int CS_FLOAT=1;
ColorModel sourceModel;
int modelStyle;
public GrayModel(ColorModel sourceModel) {
super(sourceModel.getPixelSize());
this.sourceModel=sourceModel;
modelStyle=0;
}
public GrayModel(ColorModel sourceModel,int style) {
super(sourceModel.getPixelSize());
this.sourceModel=sourceModel;
modelStyle=style;
}
public void setGrayStyle(int style) {
modelStyle=style;
}
protected int getGrayLevel(int pixel) {
if (modelStyle==CS_MAX) {
return Math.max(sourceModel.getRed(pixel),Math.max(sourceModel.getGreen(pixel),sourceModel.getBlue(pixel)));
}
else if (modelStyle==CS_FLOAT){
return (int)(sourceModel.getRed(pixel)*0.3+sourceModel.getGreen(pixel)*0.59+sourceModel.getBlue(pixel)*0.11);
}
else {
return 0;
}
}
public int getAlpha(int pixel) {
return sourceModel.getAlpha(pixel);
}
public int getRed(int pixel) {
return getGrayLevel(pixel);
}
public int getGreen(int pixel) {
return getGrayLevel(pixel);
}
public int getBlue(int pixel) {
return getGrayLevel(pixel);
}
public int getRGB(int pixel) {
int gray=getGrayLevel(pixel);
return (getAlpha(pixel)24)+(gray16)+(gray8)+gray;
}
}
如果你有自己的算法或者想取得特殊的效果,你可以修改类GrayModel的方法getGrayLevel()。
色彩变换
根据上面的原理,我们也可以实现色彩变换,这样的效果就很多了。下面是一个反转变换的例子:
/* ReverseColorModel.java*/
/*@author:cherami */
/*email:cherami@163.net*/
import java.awt.image.*;
public class ReverseColorModel extends ColorModel {
ColorModel sourceModel;
public ReverseColorModel(ColorModel sourceModel) {
super(sourceModel.getPixelSize());
this.sourceModel=sourceModel;
}
public int getAlpha(int pixel) {
return sourceModel.getAlpha(pixel);
}
public int getRed(int pixel) {
return ~sourceModel.getRed(pixel);
}
public int getGreen(int pixel) {
return ~sourceModel.getGreen(pixel);
}
public int getBlue(int pixel) {
return ~sourceModel.getBlue(pixel);
}
public int getRGB(int pixel) {
return (getAlpha(pixel)24)+(getRed(pixel)16)+(getGreen(pixel)8)+getBlue(pixel);
}
}
/* ReverseColorModel.java*/
/*@author:cherami */
/*email:cherami@163.net*/
import java.awt.image.*;
public class ReverseFilter extends RGBImageFilter {
public ReverseFilter() {
canFilterIndexColorModel=true;
}
public void setColorModel(ColorModel cm) {
substituteColorModel(cm,new ReverseColorModel(cm));
}
public int filterRGB(int x,int y,int pixel) {
return pixel;
}
}
要想取得自己的效果,需要修改ReverseColorModel.java中的三个方法,getRed、getGreen、getBlue。
下面是上面的效果的一个总的演示程序。
/*GrayImage.java*/
/*@author:cherami */
/*email:cherami@163.net*/
import java.awt.*;
import java.awt.image.*;
import javax.swing.*;
import java.awt.color.*;
public class GrayImage extends JFrame{
Image source,gray,gray3,clip,bigimg;
BufferedImage bimg,gray2;
GrayFilter filter,filter2;
ImageIcon ii;
ImageFilter cropFilter;
int iw,ih;
public GrayImage() {
ii=new ImageIcon(\"images/11.gif\");
source=ii.getImage();
iw=source.getWidth(this);
ih=source.getHeight(this);
filter=new GrayFilter();
filter2=new GrayFilter(GrayModel.CS_FLOAT);
gray=createImage(new FilteredImageSource(source.getSource(),filter));
gray3=createImage(new FilteredImageSource(source.getSource(),filter2));
cropFilter=new CropImageFilter(5,5,iw-5,ih-5);
clip=createImage(new FilteredImageSource(source.getSource(),cropFilter));
bigimg=source.getScaledInstance(iw*2,ih*2,Image.SCALE_DEFAULT);
MediaTracker mt=new MediaTracker(this);
mt.addImage(gray,0);
try {
mt.waitForAll();
} catch (Exception e) {
}
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流