go语言的线程和携程 go协程和线程-成都快上网建站

go语言的线程和携程 go协程和线程

【golang详解】go语言GMP(GPM)原理和调度

Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。

成都创新互联是一家集网站建设,长宁企业网站建设,长宁品牌网站建设,网站定制,长宁网站建设报价,网络营销,网络优化,长宁网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

首先介绍一下GMP什么意思:

G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。

M ---------- thread内核级线程,所有的G都要放在M上才能运行。

P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。

Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行

模型图:

避免频繁的创建、销毁线程,而是对线程的复用。

1)work stealing机制

当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。

2)hand off机制

当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:

如果有空闲的P,则获取一个P,继续执行G0。

如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。

如下图

GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行

在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。

具体可以去看另一篇文章

【Golang详解】go语言调度机制 抢占式调度

当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。

协程经历过程

我们创建一个协程 go func()经历过程如下图:

说明:

这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。

G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;

一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G

上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。

work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。

如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。

Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:

用户态阻塞/唤醒

当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。

系统调用阻塞

当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。

队列轮转

可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

M0

M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了

G0

G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0

一个G由于调度被中断,此后如何恢复?

中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。

我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码

参考: ()

()

Go语言——goroutine并发模型

参考:

Goroutine并发调度模型深度解析手撸一个协程池

Golang 的 goroutine 是如何实现的?

Golang - 调度剖析【第二部分】

OS线程初始栈为2MB。Go语言中,每个goroutine采用动态扩容方式,初始2KB,按需增长,最大1G。此外GC会收缩栈空间。

BTW,增长扩容都是有代价的,需要copy数据到新的stack,所以初始2KB可能有些性能问题。

更多关于stack的内容,可以参见大佬的文章。 聊一聊goroutine stack

用户线程的调度以及生命周期管理都是用户层面,Go语言自己实现的,不借助OS系统调用,减少系统资源消耗。

Go语言采用两级线程模型,即用户线程与内核线程KSE(kernel scheduling entity)是M:N的。最终goroutine还是会交给OS线程执行,但是需要一个中介,提供上下文。这就是G-M-P模型

Go调度器有两个不同的运行队列:

go1.10\src\runtime\runtime2.go

Go调度器根据事件进行上下文切换。

调度的目的就是防止M堵塞,空闲,系统进程切换。

详见 Golang - 调度剖析【第二部分】

Linux可以通过epoll实现网络调用,统称网络轮询器N(Net Poller)。

文件IO操作

上面都是防止M堵塞,任务窃取是防止M空闲

每个M都有一个特殊的G,g0。用于执行调度,gc,栈管理等任务,所以g0的栈称为调度栈。g0的栈不会自动增长,不会被gc,来自os线程的栈。

go1.10\src\runtime\proc.go

G没办法自己运行,必须通过M运行

M通过通过调度,执行G

从M挂载P的runq中找到G,执行G

go语言语法(基础语法篇)

import "workname/packetfolder"

导入多个包

方法调用 包名.函数//不是函数或结构体所处文件或文件夹名

packagename.Func()

前面加个点表示省略调用,那么调用该模块里面的函数,可以不用写模块名称了:

当导入一个包时,该包下的文件里所有init()函数都会被执行,然而,有些时候我们并不需要把整个包都导入进来,仅仅是是希望它执行init()函数而已。下划线的作用仅仅是为了调用init()函数,所以无法通过包名来调用包中的其他函数

import _ package

变量声明必须要使用否则会报错。

全局变量运行声明但不使用。

func 函数名 (参数1,参数2,...) (返回值a 类型a, 返回值b 类型b,...)

func 函数名 (参数1,参数2,...) (返回值类型1, 返回值类型2,...)

func (this *结构体名) 函数名(参数 string) (返回值类型1, 返回值类型2){}

使用大小来区分函数可见性

大写是public类型

小写是private类型

func prifunc int{}

func pubfunc int{}

声明静态变量

const value int

定义变量

var value int

声明一般类型、接口和结构体

声明函数

func function () int{}

go里面所有的空值对应如下

通道类型

内建函数 new 用来分配内存,它的第一个参数是一个类型,不是一个值,它的返回值是一个指向新分配类型零值的指针

func new(Type) *Type

[这位博主有非常详细的分析]

Go 语言支持并发,我们只需要通过 go 关键字来开启 goroutine 即可。

goroutine 是轻量级线程,goroutine 的调度是由 Golang 运行时进行管理的。

同一个程序中的所有 goroutine 共享同一个地址空间。

语法格式如下:

通道(channel)是用来传递数据的一个数据结构。

通道的声明

通道可用于两个 goroutine 之间通过传递一个指定类型的值来同步运行和通讯。操作符 - 用于指定通道的方向,发送或接收。如果未指定方向,则为双向通道。

[这里有比较详细的用例]

go里面的空接口可以指代任何类型(无论是变量还是函数)

声明空接口

go里面的的强制类型转换语法为:

int(data)

如果是接口类型的强制转成其他类型的语法为:

go里面的强制转换是将值复制过去,所以在数据量的时候有比较高的运行代价

什么是携程函数呢?

1.携程函数就是让出协程(线程)。当 C 函数调用了 l ua_yieldk, 当前运行的协程会挂起, 启动这个线程的 lu a_resume 调用返回。 参数 nresults 指栈上需返回给 lu a_resume 的返回值的个数。

当协程再次被延续时, L ua 调用延续函数 k 继续运行被挂起()的 C 函数。 延续函数会从前一个函数中接收到相同的栈, 栈中的 n 个返回值被移除而压入了从 lu a_resume 传入的参数。 此外,延续函数还会收到传给 lu a_yieldk 的参数 ctx。

通常,这个函数不会返回; 当协程一次次延续,将从延续函数继续运行。 然而,有一个例外: 当这个函数从一个逐行运行的钩子函数(参见 ) 中调用时,lu a_yieldk 不可以提供延续函数。 (也就是类似 l ua_yield 的形式), 而此时,钩子函数在调用完让出后将立刻返回。 Lu a 会使协程让出,一旦协程再次被延续, 触发钩子的函数会继续正常运行。

2.当一个线程处于未提供延续函数的 C 调用中,调用它会抛出一个错误。 从并非用延续方式(例如:主线程)启动的线程中调用它也会这样

交换同一个状态机下不同线程中的值。

这个函数会从 from 的栈上弹出 n 个值, 然后把它们压入 to 的栈上。

这个函数等价于调用 lua_yieldk, 不同的是不提供延续函数(参见 )。 因此,当线程被延续,线程会继续运行调用 lu a_yield 函数的函数。

3.如果给定索引处的值是一个完全用户数据, 函数返回其内存块的地址。 如果值是一个轻量用户数据, 那么就返回它表示的指针。 否则,返回 NULL 。

把给定索引处的 L ua 值转换为一个 C 字符串。 如果 len 不为 NULL , 它还把字符串长度设到 *len 中。 这个 Lua 值必须是一个字符串或是一个数字; 否则返回返回 NULL 。 如果值是一个数字, l ua_tolstring 还会 把堆栈中的那个值的实际类型转换为一个字符串。 (当遍历一张表5.的时候, 若把 l ua_tolstring 作用在键上, 这个转换有可能导致 l ua_next 弄错。)

lu a_tolstring 返回一个已对齐指针 指向 L ua 状态机中的字符串。 这个字符串总能保证 ( C 要求的)最后一个字符为零 ('\0') , 而且它允许在字符串内包含多个这样的零。

因为 L ua 中可能发生垃圾收集, 所以不保证 lua_tolstring 返回的指针, 在对应的值从堆栈中移除后依然有效。

6.(例如:主线程)启动的线程中调用它也会这样

交换同一个状态机下不同线程中的值。

这个函数会从 from 的栈上弹出 n 个值, 然后把它们压入 to 的栈上。

这个函数等价于调用 lua_yieldk, 不同的是不提供延续函数(参见 )。 因此,当线程被延续,线程会继续运行调用 lu a_yield 函数的函数。

为什么go语言适合开发网游服务器端

前段时间在golang-China读到这个贴:

个人觉得golang十分适合进行网游服务器端开发,写下这篇文章总结一下。

从网游的角度看:

要成功的运营一款网游,很大程度上依赖于玩家自发形成的社区。只有玩家自发形成一个稳定的生态系统,游戏才能持续下去,避免鬼城的出现。而这就需要多次大量导入用户,在同时在线用户量达到某个临界点的时候,才有可能完成。因此,多人同时在线十分有必要。

再来看网游的常见玩法,除了排行榜这类统计和数据汇总的功能外,基本没有需要大量CPU时间的应用。以前的项目里,即时战斗产生的各种伤害计算对CPU的消耗也不大。玩家要完成一次操作,需要通过客户端-服务器端-客户端这样一个来回,为了获得高响应速度,满足玩家体验,服务器端的处理也不能占用太多时间。所以,每次请求对应的CPU占用是比较小的。

网游的IO主要分两个方面,一个是网络IO,一个是磁盘IO。网络IO方面,可以分成美术资源的IO和游戏逻辑指令的IO,这里主要分析游戏逻辑的IO。游戏逻辑的IO跟CPU占用的情况相似,每次请求的字节数很小,但由于多人同时在线,因此并发数相当高。另外,地图信息的广播也会带来比较频繁的网络通信。磁盘IO方面,主要是游戏数据的保存。采用不同的数据库,会有比较大的区别。以前的项目里,就经历了从MySQL转向MongoDB这种内存数据库的过程,磁盘IO不再是瓶颈。总体来说,还是用内存做一级缓冲,避免大量小数据块读写的方案。

针对网游的这些特点,golang的语言特性十分适合开发游戏服务器端。

首先,go语言提供goroutine机制作为原生的并发机制。每个goroutine所需的内存很少,实际应用中可以启动大量的goroutine对并发连接进行响应。goroutine与gevent中的greenlet很相像,遇到IO阻塞的时候,调度器就会自动切换到另一个goroutine执行,保证CPU不会因为IO而发生等待。而goroutine与gevent相比,没有了python底层的GIL限制,就不需要利用多进程来榨取多核机器的性能了。通过设置最大线程数,可以控制go所启动的线程,每个线程执行一个goroutine,让CPU满负载运行。

同时,go语言为goroutine提供了独到的通信机制channel。channel发生读写的时候,也会挂起当前操作channel的goroutine,是一种同步阻塞通信。这样既达到了通信的目的,又实现同步,用CSP模型的观点看,并发模型就是通过一组进程和进程间的事件触发解决任务的。虽然说,主流的编程语言之间,只要是图灵完备的,他们就都能实现相同的功能。但go语言提供的这种协程间通信机制,十分优雅地揭示了协程通信的本质,避免了以往锁的显式使用带给程序员的心理负担,确是一大优势。进行网游开发的程序员,可以将游戏逻辑按照单线程阻塞式的写,不需要额外考虑线程调度的问题,以及线程间数据依赖的问题。因为,线程间的channel通信,已经表达了线程间的数据依赖关系了,而go的调度器会给予妥善的处理。

另外,go语言提供的gc机制,以及对指针的保护式使用,可以大大减轻程序员的开发压力,提高开发效率。

展望未来,我期待go语言社区能够提供更多的goroutine间的隔离机制。个人十分推崇erlang社区的脆崩哲学,推动应用发生预期外行为时,尽早崩溃,再fork出新进程处理新的请求。对于协程机制,需要由程序员保证执行的函数不会发生死循环,导致线程卡死。如果能够定制goroutine所执行函数的最大CPU执行时间,及所能使用的最大内存空间,对于提升系统的鲁棒性,大有裨益。

程序员从c/c++转到Go语言怎么样?

从c

c++转go语言,非常简单。需要了解的也就是语法问题。好在go语法也非常简练,不像python有非常多的语法糖。而且go有自带的资源回收机制,在多线程服务端开发方面,设计简单非常多。同时支持比线程更轻量级的携程,调用也非常简单。不像c语言创建线程进城语言参数复杂的系统调用。


当前标题:go语言的线程和携程 go协程和线程
网站路径:http://kswjz.com/article/hgiicp.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流