nosql跟mysql,nosql和sql-成都快上网建站

nosql跟mysql,nosql和sql

如何从mysql转到nosql

1、在本地和服务器都安装同样的数据库客户端,如oracle常用SQLPlus、MySQL常用HeiDi sql或者navicat、mssql2005则常用SQL Server Management Studio;

成都创新互联公司成立于2013年,先为绿园等服务建站,绿园等地企业,进行企业商务咨询服务。为绿园企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

2、在本地通过数据库客户端导出数据库为sql文件;

3、将sql文件远程传递到服务器上;

4、在服务器上用相同的数据库客户端将sql文件执行一遍即可将本地数据库导入到服务器上。

简单易用的数据库哪个比较好?

1.数据量太大,比如上亿,就用oracle,优点上亿数据对Oracle来说轻飘飘的,也不用太多优化配置,缺点安装比较麻烦,上手比较慢。

2.数据量较大,比如千万级,用postgresql,它号称对标Oracle,处理千万级数据还是可以的,也是易学易用。

3.数据量一般,比如百万级,用mysql,这个级别的数据量mysql处理还是比较快的。

4.数据量较小,比如十万以下,sqlite、access都可以。

上面是基于单表操作的数据量,你看着选。

简单易用的数据库哪个比较好?这个要具体看你的用途,如果数据量比较少(10万左右),追求简约简单,免费开源的sqlite就行,如果数据量比较多,考虑到高并发、分布式,可以使用专业的mysql、postgresql,下面我分别简单介绍一下,感兴趣的朋友可以尝试一下:

小巧灵活sqlite

这是基于c语言开发的一个轻量级关系型数据库,短小精悍、免费开源,个人使用无需繁琐的配置,只需一个简单的运行库便可直接使用,针对各种编程语言都提供了丰富的API接口, java、 python、c#等都可轻松操作,如果你存储数据量不多,只是本地简单的操作(读多写少),可以使用一下这个数据库,占用内存非常少,轻便灵活,当然,在高并发、数据量大的情况下就不合适了:

专业强大mysql

这是目前应该广泛使用的一个关系型数据库,免费开源跨平台,在信息系统开发方面一直占据着主力位置,如果你从事于web开发或者网站后台建设,那么这个数据库一定非常熟悉,支持高并发、分布式,存储数据量相对于sqlite来说,更多也更安全,索引、触发器、存储过程等功能非常不错,支持数据导入导出、恢复备份,只要你熟悉一下基本使用过程,很快就能掌握和运用:

免费开源postgresql

这是加州大学计算机系开发的一个对象-关系型数据库(自由软件),免费、开源、跨平台,支持流计算、全文检索、图式搜索、并行计算、存储过程、空间数据、K-V类型,相比较mysql来说,在复杂查询、高并发下更稳定、性能更优越,可扩展性、可维护性非常不错,但也有劣势,例如新旧版本不分离存储,没有Coverage index scan等,总体使用效果来说还不错:

当然,除了以上3个数据库,还有许多其他数据库,像mssql、oracle等也都非常不错,对于存储和处理数据来说绰绰有余,只要你熟悉一下基本使用过程,很快就能入门的,网上也有相关教程和资料,介绍的非常详细,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。

最符合初学者理解和入门的是Access,因为它和Excel本来就是一个套件,相互转化容易,复制粘贴即可,非常好理解库、表、字段、键的概念。

如果数据量不大,强烈推荐试试Filemaker,脚本化编程,自由定制输入界面、工作流程,非常便捷高效。

最近杀出来的airtable,更是简单高效,界面美观,操作与电子表格相当,发展势头也非常迅猛。

二者侧重点有所不同,用户可根据需要选择

作为一个软件开发人员,长期需要和数据库打交道,个人更加青睐于MySQL。虽然可能基于你的Excel原因,有些人会建议你使用Access数据库,但是基于我个人的 意见,我并不建议你那样做。采用MySql的具体理由如下:

1.MySQL具有普遍性,在国内的环境中,绝大多数的互联网企业采用的是MySQL。有了广大的用户基础后,针对于各种问题网上也能更好地找到解决方案。

2.MySQL相对于Oracle而言,更加轻量化,针对于从Excel量级的数据,没必要使用Oracle。同时MySQL是完全免费的,不用担心版权及费用问题,无论对个人还是对预算有限的企业而言都是很好的选择。

3.MySQL高度兼容标准SQL,这对于以后迁移到其他数据库而言,也能很大程度地降低学习成本。

希望我的回答能够对你有所帮助!!![耶][耶][耶]

Excel办公确实便利,可以做一些简单的数据分析,但涉及大量复杂的数据运算,就会遇到和题主一样的问题,运算速度慢,如果主机性能不是很好,还有可能面临电脑死机,数据丢失等问题。

遇到这种情况,我们该如何解决呢?数据库的重要性显而易见!

现在, 我将用3分钟的时间,与您探讨该选择何种数据库,以及选择它的理由,是否有更优的解决方案呢?

MySQL数据库,90%的企业都会选择它

数据库选得好,企业的数据安全,资产安全,也就得到了保障。那么该如何选择数据库呢?这个跟你的业务量和业务服务行业,密不可分。

如果你只是上班打卡,用SQL server就可以了;

如果你要储存会话信息,用户配置信息,购物车数据,建议使用NoSQL数据库;

不过90%的企业或个人,首选数据库都是MySQL数据库。

为什么这么说?

因为,它集 低成本、高可用、可靠性强、易用性强、体积小、速度快开放源码 等特性于一身,所以在金融、财务、网站、 数据处理 等应用领域,它占据着独一无二的优势。

这也是几乎所有企业都选择它,来存储数据的原因。

加之MySQL数据库,支持多种存储引擎,支持大型数据库,可以处理成千上万条记录,还提供用于管理、检查、优化数据库操作的工具。

因而,MySQL尤其受个人,以及中小企业的推崇。

虽然MySQL数据库简单易用,但我还是不会部署该怎么办?

别担心,现在市面上已经出现了,一种自带数据库的新型办公软件。

比如说,云表企业应用平台,一款兼容excel功能,但功能更为强大的办公软件,它就内嵌了MySQL数据库。 (文末有免费获取方式)

云表内嵌的MySQL数据库,有何优点?

1. 性能更加优化,更加兼容系统。因为云表的研发人员,时刻更新维护MySQL数据库。

2. 省去自己手动部署的麻烦。但如果你熟悉部署数据库,想把数据库改成Oracle或SQL server等数据库,也可以设置。(不过,我建议IT小白还是 “拿来即用” 就好)

3. 快速实时计算。数据分析实时交互,完全满足管理决策中的临时性分析,多变的业务需求,以及频繁的结果刷新。

4. 通过自带的内存计算引擎,无需事先建立CUBE,IT部门将告别报表延时报表分析,亿级数据秒级响应。

内嵌的MySQL数据库是否可靠

云表不仅是一款办公软件,同时还是一款开发工具。

通过它,你将解决以下问题:

复杂的数据运算,精确到行列的权限管控,以及工作流,海量用户同时在线办公,数据透视,制作像销售单,洽谈合同等表单报表,一份制作,即可重复录用......

你还可以通过它,与电子称、地磅等进行对接,与用友金蝶等三方系统集成,生成条形码,扫码出入库,生成移动端APP...... 基本上业务所需的功能,你都可以放心交给它做。

它最大的亮点就是,你可以 用使用excel的手法,用它来开发业务应用。

而且,可视化的 拖拉拽 之后,开发出来的ERP、WMS、OA、进销存等业务应用,还秉承了MySQL数据库增删改查的功能特性。

没错,用云表开发出来的业务应用,是允许二次开发的,而且功能可以随时增删改查,轻松满足大集团精细化的数据控制需求。

不过,大家最关心的应该是数据安全问题吧。

数据存放在云表内嵌的MySQL数据库,是安全不丢失的,它提供了多种数据存储的方式,本地部署,云端部署,混合部署,任君挑选!

正因如此,像 恒逸石化、许继电气、航天科工委、中铁、中冶、云南小松 等大型集团,才鼓励内部员工去学习云表。

篇幅所限,只说到这里,说太多你也不会看。

免费 的软获取方式在下方:

数据库的用处可大着呢,不仅可以实现数据共享,减少数据冗余度,还能实现对数据的集中控制,保持数据的一致性和可维护性。选取简单易用的数据库,你有什么好的建议呢,留言让我们看到噢!

题主强调了简单易用。所以推荐最简单三个。

1.Access。

2.Excel。

3.飞书文档、腾讯文档、石墨文档等的表格。

如果要做分析,数据量才比较大,建议Access,还是专业的更好一些。网上教程也很多,比较容易学。而且建议用早一点的版本,比如2003或者2007,Access这些年微软一直想从office里去掉,奈何用的人还是很多,所以不敢去掉,但是采取了一种比较恶心的方法让用户放弃,就是每发布一个新版本,就去掉一些好用的功能,所以说Access是越早的功能越强。

还一个推荐就是Sql Server Express版本,是SQL Server的免费版本,不要钱,基本功能都有,要比sqllite等强大的多

这要结合你个人实际情况来定,有计算机基础,懂一点数据库的话那么市场上的那些软件都可以用,常用有oracle,sqlserver,mysql等,要上手快还是sqlserver比较快,界面操作也比较直观;如果一点基础都没有,但是又要分析数据的话可以用微软自带的一个access,这个上手比较快。决定用哪一种之后还是要买点教材看,简单的sql查询要会,熟练之后也能提高工作效率。

个人使用数据库的话,只存数据不做分析,SQLite就足够了。

mysql mongodb区别

前言:

MySQL与MongoDB都是开源的常用数据库,但是MySQL是传统的关系型数据库,MongoDB则是非关系型数据库,也叫文档型数据库,是一种NoSQL的数据库。它们各有各的优点,关键是看用在什么地方。所以我们所熟知的那些SQL语句就不适用于MongoDB了,因为SQL语句是关系型数据库的标准语言。

一、关系型数据库-MySQL

1、在不同的引擎上有不同的存储方式。

2、查询语句是使用传统的sql语句,拥有较为成熟的体系,成熟度很高。

3、开源数据库的份额在不断增加,mysql的份额页在持续增长。

4、缺点就是在海量数据处理的时候效率会显著变慢。

二、非关系型数据库-MongoDB

非关系型数据库(nosql ),属于文档型数据库。先解释一下文档的数据库,即可以存放xml、json、bson类型系那个的数据。这些数据具备自述性,呈现分层的树状数据结构。数据结构由键值(key=value)对组成。

1、存储方式:虚拟内存+持久化。

2、查询语句:是独特的MongoDB的查询方式。

3、适合场景:事件的记录,内容管理或者博客平台等等。

4、架构特点:可以通过副本集,以及分片来实现高可用。

5、数据处理:数据是存储在硬盘上的,只不过需要经常读取的数据会被加载到内存中,将数据存储在物理内存中,从而达到高速读写。

6、成熟度与广泛度:新兴数据库,成熟度较低,Nosql数据库中最为接近关系型数据库,比较完善的DB之一,适用人群不断在增长。

三、MongoDB优势与劣势

优势:

1、在适量级的内存的MongoDB的性能是非常迅速的,它将热数据存储在物理内存中,使得热数据的读写变得十分快。

2、MongoDB的高可用和集群架构拥有十分高的扩展性。

3、在副本集中,当主库遇到问题,无法继续提供服务的时候,副本集将选举一个新的主库继续提供服务。

4、MongoDB的Bson和JSon格式的数据十分适合文档格式的存储与查询。

劣势:

1、 不支持事务操作。MongoDB本身没有自带事务机制,若需要在MongoDB中实现事务机制,需通过一个额外的表,从逻辑上自行实现事务。

2、 应用经验少,由于NoSQL兴起时间短,应用经验相比关系型数据库较少。

3、MongoDB占用空间过大。

nosql与mysql他们之间的区别于优点

百度百科:

NoSQL与关系型数据库设计理念比较

关系型数据库中的表都是存储一些格式化的数据结构,每个元组字段的组成都一样,即使不是每个元组都需要所有的字段,但数据库会为每个元组分配所有的字段,这样的结构可以便于表与表之间进行连接等操作,但从另一个角度来说它也是关系型数据库性能瓶颈的一个因素。而非关系型数据库以键值对存储,它的结构不固定,每一个元组可以有不一样的字段,每个元组可以根据需要增加一些自己的键值对,这样就不会局限于固定的结构,可以减少一些时间和空间的开销。

特点:

它们可以处理超大量的数据。

它们运行在便宜的PC服务器集群上。

它们击碎了性能瓶颈。

没有过多的操作。

Bootstrap支持

缺点:

但是一些人承认,没有正式的官方支持,万一出了差错会是可怕的,至少很多管理人员是这样看。

此外,nosql并未形成一定标准,各种产品层出不穷,内部混乱,各种项目还需时间来检验

NoSQL和MySQL的区别大吗?

即非关系型数据库和关系型数据库。

MySQL的优点:事务处理—保持数据的一致性;由于以标准化为前提,数据更新的开销很小(相同的字段基本上只有一处);可以进行Join等复杂查询

NoSQL的优点:首先它是基于内存的,也就是数据放在内存中,而不是像数据库那样把数据放在磁盘上,而内存的读取速度是磁盘读取速度的几十倍到上百倍,所以NoSQL工具的速度远比数据库读取速度要快得多,满足了高响应的要求。即使NoSQL将数据放在磁盘中,它也是一种半结构化的数据 格式,读取到解析的复杂度远比MySQL要简单,这是因为MySQL存储的是经过结构化、多范式等有复杂规则的数据,还原为内存结构的速度较慢。NoSQL在很大程度上满足了高并发、快速读/和响应的要求,所以它也是Java互联网系统的利器。

简单的扩展:典型例子是Cassandra,由于其架构是类似于经典的P2P,所以能通过轻松地添加新的节点来扩展这个集群;

低廉的成本:这是大多数分布式数据库共有的特点,因为主要都是开源软件,没有昂贵的License成本;

NoSQL的缺点:大多数NoSQL数据库都不支持事务,也不像 SQL Server和Oracle那样能提供各种附加功能,比如BI和报表等; 不提供对SQL的支持

那么该如何选择?

如果规模和性能比24小时的数据一致性更重要,那NoSQL是一个理想的选择 (NoSQL依赖于BASE模型——基本可用、软状态、最终一致性)。

但如果要保证到“始终一致”,尤其是对于机密信息和财务信息,那么MySQL很可能是最优的选择(MySQL依赖于ACID模型——原子性、一致性、独立性和耐久性)。

如果关系数据库在你的应用场景中,完全能够很好的工作,而你又是非常善于使用和维护关系数据库的,那么我觉得你完全没有必要迁移到NoSQL上面,除非你是个喜欢折腾的人。如果你是在金融,电信等以数据为王的关键领域,目前使用的是Oracle数据库来提供高可靠性的,除非遇到特别大的瓶颈,不然也别贸然尝试NoSQL。

然而,在WEB2.0的网站中,关系数据库大部分都出现了瓶颈。在磁盘IO、数据库可扩展上都花费了开发人员相当多的精力来优化,比如做分表分库(database sharding)、主从复制、异构复制等等,然而,这些工作需要的技术能力越来越高,也越来越具有挑战性。如果你正在经历这些场合,那么我觉得你应该尝试一下NoSQL了。

具体问题具体分析

MySQL体积小、速度快、成本低、结构稳定、便于查询,可以保证数据的一致性,但缺乏灵活性。

NoSQL高性能、高扩展、高可用,不用局限于固定的结构,减少了时间和空间上的开销,却又很难保证数据一致性。

————————————————

版权声明:本文为CSDN博主「蒟蒻熊」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:

Mongodb和mysql的区别

Mongodb和mysql的区别

1.Mongodb简介及优缺点分析

Mongodb是非关系型数据库(nosql ),属于文档型数据库。文档是mongoDB中数据的基本单元,类似关系数据库的行,多个键值对有序地放置在一起便是文档,语法有点类似javascript面向对象的查询语言,它是一个面向集合的,模式自由的文档型数据库。

存储方式:虚拟内存+持久化。

查询语句:是独特的Mongodb的查询方式。

适合场景:事件的记录,内容管理或者博客平台等等。

架构特点:可以通过副本集,以及分片来实现高可用。

数据处理:数据是存储在硬盘上的,只不过需要经常读取的数据会被加载到内存中,将数据存储在物理内存中,从而达到高速读写。

成熟度与广泛度:新兴数据库,成熟度较低,Nosql数据库中最为接近关系型数据库,比较完善的DB之一,适用人群不断在增长。

优点:

快速!在适量级的内存的Mongodb的性能是非常迅速的,它将热数据存储在物理内存中,使得热数据的读写变得十分快。高扩展性,存储的数据格式是json格式!

缺点:

① mongodb不支持事务操作。

② mongodb占用空间过大。

③ 开发文档不是很完全,完善。

2.MySQL优缺点分析

优点:

在不同的引擎上有不同 的存储方式。

查询语句是使用传统的sql语句,拥有较为成熟的体系,成熟度很高。

开源数据库的份额在不断增加,mysql的份额页在持续增长。

缺点:

在海量数据处理的时候效率会显著变慢。

3.Mongodb和MySQL数据库的对比

传统的关系数据库一般由数据库(database)、表(table)、记录(record)三个层次概念组成,MongoDB是由数据库(database)、集合(collection)、文档对象(document)三个层次组成。

MongoDB对于关系型数据库里的表,但是集合中没有列、行和关系概念,这体现了模式自由的特点。

4.MongoDB常用语句

# 连接Mongo数据库,并设置数据存储地址

mongod.exe --dbpath "d:softwareMongoDBServer3.0data"

#-----------------------#1# 数据库

# 查看所有的数据库

show dbs

# 删除当前使用的数据库

db.dropDatabase()

# 使用这个数据库(只有插入数据后完成创建数据库)

use dbt

# 查看当前使用的数据库

db

db.getName()

# 查看当前数据库状态

db.stats()

# 修复当前数据库

db.repairDatabase()

# 从一个数据库复制到另一个数据库

db.copyDatabase("mydb", "temp", "127.0.0.1");

#-----------------------#2# 集合

# 查看当前数据库下所有的集合

show collections

show tables

# 创建名称为coll集合

db.createCollection('coll')

db.createCollection("coll2", {capped:true, autoIndexId:true, size:6142800, max:10000}) # 可选参数

# 查看当前集合状态

db.coll.stats()

# 删除名称为coll集合

db.coll.drop()

#-----------------------#3# 集合数据

# 插入空数据并且直接创建名称为coll集合

db.coll.insert({})

# 插入一个或多个数据

db.coll.insert({name:'tom', age:22})

db.coll.insert([{name:'adam', age:10},{name:'john', age:23}])

# 添加数据(save方法可以修改相同id的数据)

db.coll.save({name:'allen'})

# 删除一个或所有的数据

db.coll.remove({name:'tom'})

db.coll.remove({})

# 删除符合条件的数据中的第一条

db.coll.remove({name:'tom'}, 1)

# 更改数据

db.coll.update({name:'tom', age:22}, {$set:{name:'tom', age:222}})

# 查看数据

db.coll.find()

# 查看一条数据

db.coll.findOne()

db.coll.find({}, {name:1, '_id':0}) # 1表示显示,0表示不显示(find默认显示_id)

# 格式化显示数据,使数据更加清晰明了

db.coll.find().pretty()

# 使用and,or查看数据

db.coll.find({name:'tom', age:22}) # 等同and使用

db.coll.find({$or:[{name:'tom'}, {age:21}]}) # or使用

# 操作符大于,小于,等于,不等于,大于不等于,小于不等于

db.coll.find({age: {$gt: 22}}) # 大于

db.coll.find({age: {$lt: 22}}) # 大于

db.coll.find({age: 22}) # 等于

db.coll.find({age: {$ne: 22}}) # 不等于

db.coll.find({age: {$gte: 22}}) # 大于等于

db.coll.find({age: {$lte: 22}}) # 小于等于

# 显示从skip之后limit个

db.coll.find().limit(2).skip(1)

#-----------------------# # 用户

# 3.x之后版本添加用户

use admin

db.createUser({user:'nu', pwd:'nu', roles:[{role:'readWrite',db:'admin'}]})

# 用户认证

db.auth("nu", "nu");

# 显示当前所有用户

show users;

db.system.users.find()

3.x版本删除用户

db.removeUser('nu') # 不推荐使用,已经废弃

db.dropUser("nu");

# 当前db版本

db.version();

# 当前db的链接机器地址和端口

db.getMongo();

# 备份到备份目录

mongodump

# 从备份目录恢复备份语句。

mongorestore

咱们下期见。


新闻标题:nosql跟mysql,nosql和sql
网站URL:http://kswjz.com/article/hdescs.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流