扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!
创新互联主营怀化网站建设的网络公司,主营网站建设方案,成都App制作,怀化h5微信小程序定制开发搭建,怀化网站营销推广欢迎怀化等地区企业咨询本篇文章为大家展示了Python连接数据库的方法,代码简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
pyodbc
连接两种技术的桥梁是pyodbc,该库可以轻松访问ODBC数据库。
ODBC(开放数据库连接的简称)是一种用于访问数据库的标准化应用程序编程接口(API),由90年代初的SQLAccess组开发。兼容的数据库管理系统(DBMS)包括:
· IBM Db2
· MySQL
· Oracle
· MS Access
·MS SQL服务器
本文将使用MS SQL服务器。在多数情况下,该服务器可以直接转移,与任何符合ODBC的数据库都可一起使用。唯一需要更改的是连接设置。
连接
首先,要创建与SQL 服务器的连接,可以通过pyodbc.connect实现。在此函数中,还须传递连接字符串。此连接字符串必须指定DBMS驱动程序、服务器、要连接的特定数据库以及连接设置。
因此,假设要连接到服务器UKXXX00123,45600和数据库DB01,需要使用SQL Server Native Client 11.0。从内部连接使得连接被信任,无需输入用户名和密码。
cnxn_str = ("Driver={SQLServer Native Client 11.0};" "Server=UKXXX00123,45600;" "Database=DB01;" "Trusted_Connection=yes;")
现在,连接已初始化为:
cnxn = pyodbc.connect(cnxn_str)
如果不通过受信任的连接访问数据库,则需要输入通常用于通过SQLServer Management Studio(SSMS)访问服务器的用户名和密码。例如,如果用户名是JoeBloggs,而密码是Password123,则应立即更改密码。更改密码之前,可以按照如下进行连接:
cnxn_str = ("Driver={SQLServer Native Client 11.0};" "Server=UKXXX00123,45600;" "Database=DB01;" "UID=JoeBloggs;" "PWD=Password123;")cnxn = pyodbc.connect(cnxn_str)
现在我们已连接到数据库,可以开始通过Python执行SQL查询。执行查询
SQL 服务器上运行的每个查询都包含游标初始化和查询执行。如果要在服务器内部进行任何更改,还需要将这些更改提交到服务器。
先来初始化游标:
cursor = cnxn.cursor()
现在,每当要执行查询时,都要使用此游标对象。
从名为“customers”表中选择前1000行:
cursor.execute("SELECTTOP(1000) * FROM customers")
执行该操作,但这发生在服务器内部,实际上什么也没有返回到Python。让我们一起看看从SQL中提取的这些数据。
提取数据
要从SQL中提取数据到Python中,需要使用pandas。Pandas提供了一个非常方便的函数read_sql,该函数可以从SQL读取数据。read_sql需要查询和连接实例cnxn,如下所示:
data =pd.read_sql("SELECT TOP(1000) * FROM customers", cnxn)
这会返回到包含“customers”表中前1000行的数据框。
在SQL中变更数据
现在,如果要变更SQL中的数据,需要在原始的初始化连接后添加另一步,执行查询过程。在SQL中执行查询时,这些变更将保存在临时存在的空格中,而不是直接对数据进行更改。
为了让变更永久生效,必须提交变更。连接firstName和lastName列,创建fullName列。
cursor = cnxn.cursor()# firstalter the table, adding a column cursor.execute("ALTER TABLE customer " + "ADD fullNameVARCHAR(20)")# now update that column to contain firstName + lastNamecursor.execute("UPDATEcustomer " + "SET fullName = firstName + " " + lastName")
此时,fullName并不存在于数据库中。必须提交这些变更,让变更永久生效:
cnxn.commit()
下一步
一旦执行了需要执行的任何操作任务,就可以把数据提取到Python中,也可以将数据提取到Python中,在Python中进行操作。
无论采用哪种方法,一旦Python中有了数据,就可以做很多以前无法做到的事情。
也许需要执行一些日常报告,通常使用这些报告查询SQL 服务器中的最新数据,计算基本统计信息,然后通过电子邮件发送结果。如何自动化这一过程呢?
# imports for SQL data part import pyodbc from datetime import datetime,timedelta import pandas as pd # imports forsending email from email.mime.text importMIMEText fromemail.mime.multipart importMIMEMultipart import smtplib date = datetime.today() -timedelta(days=7) # get the date 7 days ago date = date.strftime("%Y-%m-%d") # convert to format yyyy-mm-dd cnxn = pyodbc.connect(cnxn_str) # initialise connection (assume we havealready defined cnxn_str) # build up ourquery string query = ("SELECT *FROM customers " f"WHERE joinDate > '{date}'") # execute thequery and read to a dataframe in Python data = pd.read_sql(query, cnxn) del cnxn # close the connection # make a fewcalculations mean_payment = data['payment'].mean() std_payment = data['payment'].std() # get maxpayment and product details max_vals = data[['product', 'payment']].sort_values(by=['payment'], ascending=False).iloc[0] # write an emailmessage txt = (f"Customerreporting for period {date} - {datetime.today().strftime('%Y-%m-%d')}.\n\n" f"Mean payment amounts received: {mean_payment}\n" f"Standard deviation of payment amounts: {std_payments}\n" f"Highest payment amount of {max_vals['payment']} " f"received from {max_vals['product']} product.") # we will built themessage using the email library and send using smtplib msg =MIMEMultipart() msg['Subject'] ="Automatedcustomer report" # set emailsubject msg.attach(MIMEText(txt)) # add text contents # we will sendvia outlook, first we initialise connection to mail server smtp = smtplib.SMTP('smtp-mail.outlook.com', '587') smtp.ehlo() # say hello to the server smtp.starttls() # we will communicate using TLSencryption # login to outlookserver, using generic email and password smtp.login('joebloggs@outlook.com', 'Password123') # send email to ourboss smtp.sendmail('joebloggs@outlook.com', 'joebloggsboss@outlook.com', msg.as_string()) # finally,disconnect from the mail server smtp.quit()
至此,任务结束!运行此代码快速提取前一周的数据,计算关键指标,并把摘要发送给老板。通过简单的步骤,我们了解了如何通过使用SQL和Python的集成来快速建立更高效、自动化的工作流程。不仅仅可以用来做本例中的事,它还有很多用途等你开发。
上述内容就是Python连接数据库的方法,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注创新互联-成都网站建设公司行业资讯频道。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流