包含nosql数据统计的词条-成都快上网建站

包含nosql数据统计的词条

mysql大数据 怎么 统计数据

通过数据表来统计,数据量太大的话,可以建适合的索引来统计;

成都创新互联专注为客户提供全方位的互联网综合服务,包含不限于网站建设、成都做网站、左云网络推广、微信小程序、左云网络营销、左云企业策划、左云品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;成都创新互联为所有大学生创业者提供左云建站搭建服务,24小时服务热线:18982081108,官方网址:www.cdcxhl.com

另外也可以通过nosql来做计数器

nosql和sql的区别

一样是数据库

NOSQL查询速度快,但是占用空间也大(都去索引那边了)

但是NOSQL查询复杂的逻辑关系的时候,只能批量获取到本地去统计而SQL能通过条件和关联表等方式进行筛选只显示符合条件的语句。

NOSQL用于无条件或少条件下的存取。百亿级数据也能快速取出。

SQL用于复杂的逻辑存取。在数据量不多的情况下也能跟NOSQL一样用于数据存储。

什么数据库适合进行web数据的用户追踪和统计。sql和nosql都可以。要求是需要进行大量频繁的写

NOSQL的话,Redis的写很快,我就用来在Tomcat集群中实现Session共享。但是Redis计算和统计能力比较弱。MongoDB计算统计方面会比较方便,但是读写性能稍差。一般用还是MongoDB吧,各方面平衡一点。

高性能 NoSQL

关系数据库经过几十年的发展,已经非常成熟,但同时也存在不足:

表结构是强约束的,业务变更时扩充很麻烦。

如果对大数据量的表进行统计运算,I/O会很高,因为即使只针对某列进行运算,也需要将整行数据读入内存。

全文搜索只能使用 Like 进行整表扫描,性能非常低。

针对这些不足,产生了不同的 NoSQL 解决方案,在某些场景下比关系数据库更有优势,但同时也牺牲了某些特性,所以不能片面的迷信某种方案,应将其作为 SQL 的有利补充。

NoSQL != No SQL,而是:

NoSQL = Not Only SQL

典型的 NoSQL 方案分为4类:

Redis 是典型,其 value 是具体的数据结构,包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被称为数据结构服务器。

以 list 为例:

LPOP key 是移除并返回队列左边的第一个元素。

如果用关系数据库就比较麻烦了,需要操作:

Redis 的缺点主要体现在不支持完成的ACID事务,只能保证隔离性和一致性,无法保证原子性和持久性。

最大的特点是 no-schema,无需在使用前定义字段,读取一个不存在的字段也不会导致语法错误。

特点:

以电商为例,不同商品的属性差异很大,如冰箱和电脑,这种差异性在关系数据库中会有很大的麻烦,而使用文档数据库则非常方便。

文档数据库的主要缺点:

关系数据库是按行来存储的,列式数据库是按照列来存储数据。

按行存储的优势:

在某些场景下,这些优势就成为劣势了,例如,计算超重人员的数据,只需要读取体重这一列进行统计即可,但行式存储会将整行数据读取到内存中,很浪费。

而列式存储中,只需要读取体重这列的数据即可,I/O 将大大减少。

除了节省I/O,列式存储还有更高的压缩比,可以节省存储空间。普通行式数据库的压缩比在 3:1 到 5:1 左右,列式数据库在 8:1 到 30:1,因为单个列的数据相似度更高。

列式存储的随机写效率远低于行式存储,因为行式存储时同一行多个列都存储在连续空间中,而列式存储将不同列存储在不连续的空间。

一般将列式存储应用在离线大数据分析统计场景,因为这时主要针对部分列进行操作,而且数据写入后无须更新。

关系数据库通过索引进行快速查询,但在全文搜索的情景下,索引就不够了,因为:

假设有一个交友网站,信息表如下:

需要匹配性别、地点、语言列。

需要匹配性别、地点、爱好列。

实际搜索中,各种排列组合非常多,关系数据库很难支持。

全文搜索引擎是使用 倒排索引 技术,建立单词到文档的索引,例如上面的表信息建立倒排索引:

所以特别适合根据关键词来查询文档内容。

上面介绍了几种典型的NoSQL方案,及各自的适用场景和特点,您可以根据实际需求进行选择。

大数据的关键技术有哪些?

预测分析:预测分析是一种统计或数据挖掘解决方案,包含可在结构化和非结构化数据中使用以确定未来结果的算法和技术。可为预测、优化、预报和模拟等许多其他用途而部署。

NoSQL数据库:非关系型数据库包括Key-value型(Redis)数据库、文档型(MonogoDB)数据库、图型(Neo4j)数据库;虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。

搜索和认知商业:当今时代大数据与分析已经发展到一个新的高度,那就是认知时代,认知时代不再是简单的数据分析与展示,它更多的是上升到一个利用数据来支撑人机交互的一种模式。

流式分析:目前流式计算是业界研究的一个热点,最近Twitter、LinkedIn等公司相继开源了流式计算系统Storm、Kafka等,加上Yahoo!之前开源的S4,流式计算研究在互联网领域持续升温,流式分析可以对多个高吞吐量的数据源进行实时的清洗、聚合和分析;对存在于社交网站、博客、电子邮件、视频、新闻、电话记录、传输数据、电子感应器之中的数字格式的信息流进行快速处理并反馈的需求。目前大数据流分析平台有很多、如开源的spark,以及ibm的 streams 。

内存数据结构:通过动态随机内存访问(DRAM)、Flash和SSD等分布式存储系统提供海量数据的低延时访问和处理;


网页标题:包含nosql数据统计的词条
链接地址:http://kswjz.com/article/hddijs.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流