python相关系数函数,python 自相关系数-成都快上网建站

python相关系数函数,python 自相关系数

python计算多个数组的相关性

线性相关:主要采用皮尔逊相关系数来度量连续变量之间的线性相关强度;

创新互联建站是专业的南岸网站建设公司,南岸接单;提供网站设计、网站制作,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行南岸网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

线性相关系数|r| 相关程度

0=|r|0.3 低度相关

0.3=|r|0.8 中度相关

0.8=|r|1 高度相关

1 函数

相关分析函数:

DataFrame.corr()

Series.corr(other)

说明:

如果由数据框调用corr方法,那么将会计算每个列两两之间的相似度

如果由序列调用corr方法,那么只是计算该序列与传入序列之间的相关度

返回值:

dataFrame调用:返回DataFrame

Series调用: 返回一个数值型,大小为相关度

2 案例

import pandas

data=pandas.read_csv('C:\\Users\\Desktop\\test.csv')

print(data.corr())

#由数据框调用corr方法,将会计算每个列两两之间的相似度,返回的是一个矩形

print(data['人口'].corr(data['文盲率']))

#由某一列调用corr方法,只是计算该序列与传入序列(本例中的'文盲率')之间的相关度

print(data['超市购物率','网上购物率','文盲率','人口']).corr()

相关性系数介绍+python代码实现 correlation analysis

参考文献:

1. python 皮尔森相关系数

2. 统计学之三大相关性系数(pearson、spearman、kendall)

皮尔森系数

重点关注第一个等号后面的公式,最后面的是推导计算,暂时不用管它们。看到没有,两个变量(X, Y)的皮尔森相关性系数(ρX,Y)等于它们之间的协方差cov(X,Y)除以它们各自标准差的乘积(σX, σY)。

公式的分母是变量的标准差,这就意味着计算皮尔森相关性系数时,变量的标准差不能为0(分母不能为0),也就是说你的两个变量中任何一个的值不能都是相同的。如果没有变化,用皮尔森相关系数是没办法算出这个变量与另一个变量之间是不是有相关性的。

皮尔森相关系数(Pearson correlation coefficient)也称皮尔森积矩相关系数(Pearson product-moment correlation coefficient) ,是一种线性相关系数。皮尔森相关系数是用来反映两个变量线性相关程度的统计量。相关系数用r表示,其中n为样本量,分别为两个变量的观测值和均值。r描述的是两个变量间线性相关强弱的程度。r的绝对值越大表明相关性越强。

简单的相关系数的分类

0.8-1.0 极强相关

0.6-0.8 强相关

0.4-0.6 中等程度相关

0.2-0.4 弱相关

0.0-0.2 极弱相关或无相关

r描述的是两个变量间线性相关强弱的程度。r的取值在-1与+1之间,若r0,表明两个变量是正相关,即一个变量的值越大,另一个变量的值也会越大;若r0,表明两个变量是负相关,即一个变量的值越大另一个变量的值反而会越小。r 的绝对值越大表明相关性越强,要注意的是这里并不存在因果关系。

斯皮尔曼相关性系数,通常也叫斯皮尔曼秩相关系数。“秩”,可以理解成就是一种顺序或者排序,那么它就是根据原始数据的排序位置进行求解,这种表征形式就没有了求皮尔森相关性系数时那些限制。下面来看一下它的计算公式:

计算过程就是:首先对两个变量(X, Y)的数据进行排序,然后记下排序以后的位置(X’, Y’),(X’, Y’)的值就称为秩次,秩次的差值就是上面公式中的di,n就是变量中数据的个数,最后带入公式就可求解结果

带入公式,求得斯皮尔曼相关性系数:ρs= 1-6 (1+1+1+9)/6 35=0.657

而且,即便在变量值没有变化的情况下,也不会出现像皮尔森系数那样分母为0而无法计算的情况。另外,即使出现异常值,由于异常值的秩次通常不会有明显的变化(比如过大或者过小,那要么排第一,要么排最后),所以对斯皮尔曼相关性系数的影响也非常小!

由于斯皮尔曼相关性系数没有那些数据条件要求,适用的范围就广多了。

肯德尔相关性系数,又称肯德尔秩相关系数,它也是一种秩相关系数,不过它所计算的对象是分类变量。

分类变量可以理解成有类别的变量,可以分为

无序的,比如性别(男、女)、血型(A、B、O、AB);

有序的,比如肥胖等级(重度肥胖,中度肥胖、轻度肥胖、不肥胖)。

通常需要求相关性系数的都是有序分类变量。

举个例子。比如评委对选手的评分(优、中、差等),我们想看两个(或者多个)评委对几位选手的评价标准是否一致;或者医院的尿糖化验报告,想检验各个医院对尿糖的化验结果是否一致,这时候就可以使用肯德尔相关性系数进行衡量。

pandas.DataFrame.corr()

DataFrame.corr(method='pearson', min_periods=1)[source]

Compute pairwise correlation of columns, excluding NA/null values

Parameters:

method : {‘pearson’, ‘kendall’, ‘spearman’}

pearson : standard correlation coefficient

kendall : Kendall Tau correlation coefficient

spearman : Spearman rank correlation

min_periods : int, optional

Minimum number of observations required per pair of columns to have a valid result. Currently only available for pearson and spearman correlation

Returns:

y : DataFrame

numpy.corrcoef(x,y = None,rowvar = True,bias = class'numpy._globals._NoValue',ddof = class'numpy._globals._NoValue' )

返回Pearson乘积矩相关系数。

cov有关更多详细信息,请参阅文档。相关系数矩阵R和协方差矩阵C之间的关系为

R的值在-1和1之间(含)。

参数:

x:array_like

包含多个变量和观察值的1维或2维数组。x的每一行代表一个变量,每一列都是对所有这些变量的单独观察。另请参阅下面的rowvar。

y:array_like,可选

一组额外的变量和观察。y的形状与x相同。

rowvar:布尔,可选

如果rowvar为True(默认),则每行表示一个变量,并在列中有观察值。否则,该关系将被转置:每列表示一个变量,而行包含观察值。

bias : _NoValue, optional Has no effect, do not use. Deprecated since version 1.10.0.

ddof : _NoValue, optional Has no effect, do not use. Deprecated since version 1.10.0.

返回:

R:ndarray 变量的相关系数矩阵。

Python基础 numpy中的常见函数有哪些

有些Python小白对numpy中的常见函数不太了解,今天小编就整理出来分享给大家。

Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。

数组常用函数

1.where()按条件返回数组的索引值

2.take(a,index)从数组a中按照索引index取值

3.linspace(a,b,N)返回一个在(a,b)范围内均匀分布的数组,元素个数为N个

4.a.fill()将数组的所有元素以指定的值填充

5.diff(a)返回数组a相邻元素的差值构成的数组

6.sign(a)返回数组a的每个元素的正负符号

7.piecewise(a,[condlist],[funclist])数组a根据布尔型条件condlist返回对应元素结果

8.a.argmax(),a.argmin()返回a最大、最小元素的索引

改变数组维度

a.ravel(),a.flatten():将数组a展平成一维数组

a.shape=(m,n),a.reshape(m,n):将数组a转换成m*n维数组

a.transpose,a.T转置数组a

数组组合

1.hstack((a,b)),concatenate((a,b),axis=1)将数组a,b沿水平方向组合

2.vstack((a,b)),concatenate((a,b),axis=0)将数组a,b沿竖直方向组合

3.row_stack((a,b))将数组a,b按行方向组合

4.column_stack((a,b))将数组a,b按列方向组合

数组分割

1.split(a,n,axis=0),vsplit(a,n)将数组a沿垂直方向分割成n个数组

2.split(a,n,axis=1),hsplit(a,n)将数组a沿水平方向分割成n个数组

数组修剪和压缩

1.a.clip(m,n)设置数组a的范围为(m,n),数组中大于n的元素设定为n,小于m的元素设定为m

2.a.compress()返回根据给定条件筛选后的数组

数组属性

1.a.dtype数组a的数据类型

2.a.shape数组a的维度

3.a.ndim数组a的维数

4.a.size数组a所含元素的总个数

5.a.itemsize数组a的元素在内存中所占的字节数

6.a.nbytes整个数组a所占的内存空间7.a.astype(int)转换a数组的类型为int型

数组计算

1.average(a,weights=v)对数组a以权重v进行加权平均

2.mean(a),max(a),min(a),middle(a),var(a),std(a)数组a的均值、最大值、最小值、中位数、方差、标准差

3.a.prod()数组a的所有元素的乘积

4.a.cumprod()数组a的元素的累积乘积

5.cov(a,b),corrcoef(a,b)数组a和b的协方差、相关系数

6.a.diagonal()查看矩阵a对角线上的元素7.a.trace()计算矩阵a的迹,即对角线元素之和

以上就是numpy中的常见函数。更多Python学习推荐:PyThon学习网教学中心。

2 如何用Python进行数据计算

numpy计算平均数 标准差 相关系数等基本知识

NumPy 是python 语言的一个第三方库,其支持大量高维度数组与矩阵运算。此外,NumPy 也针对数组运算提供大量的数学函数。

#导入Numpy库,并命名为np

import numpy as np

#创建一维数组

a = np.array([1, 2, 3])

# NumPy可以很方便地创建连续数组,比如我使用arange或linspace函数进行创建:

b = np.arange(1,5,1) // 返回一个有终点和起点、固定步长的排列,如起点是1,终点是4,步长为1,即【1,2,3,4】,

c = np.linspace(1,9,5) 返回一个有终点和起点、元素个数的的排列,如起点是1,终点是9,元素个数为5,即【1,3,5,7,9】

#通过NumPy可以自由地创建等差数组,同时也可以进行加、减、乘、除、求n次方和取余数。

求和:np.sum(a)

求取平均值:np.mean(a)

求取中位数:np.median(a)

求取加权平均数:np.average(a)

求取方差:var() np.var(a)

求取最小值:np.amin(a)

求取最大值:np.amax(a)

将两个数相加:np.add(x1, x2)

将两个数相减:np.subtract(x1, x2)

将两个数相乘:np.multiply(x1, x2)

将两个数相除:np.divide(x1, x2)

立方:np.power(x1, x2)

除余:np.remainder(x1, x2)

相关系数计算:np.corrcoef(a1, a2) (a1、a2都是矩阵)

初学python,怎样用python做pearson相关系数的检验呢,求指导啊

scipy.stats.pearsonr(x, y)

x和y为相同长度的两组数据

返回值 r, p-value

r是相关系数,取值-1~1. 表示线性相关程度

p-value越小,表示相关程度越显著。按照文档的说法“The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so.”,p-value在500个样本值以上有较高的可靠性

python polyfit函数怎么使用

用polyfit(X,Y,1)得到的拟合函数只能得到a,b,但不能得到线性相关系数R^2。如想要得到其线性相关系数,可以用regress(y,X),其使用格式

[b,bint,r,rint,stats]

=

regress(y,X);

b——拟合系数

bint——b的置信区间

r——残差值

rint——r的置信区间

stats——检验统计量,第一个就是相关系数

例如:

x=[。。。];y=[。。。]

X=[x

ones(n,1)];

%x的行数(列数)

[b,bint,r,rint,stats]

=

regress(y,X);


新闻名称:python相关系数函数,python 自相关系数
网页路径:http://kswjz.com/article/hcecoc.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流