Pytorch中的5个非常有用的张量操作分别是什么-成都快上网建站

Pytorch中的5个非常有用的张量操作分别是什么

Pytorch中的5个非常有用的张量操作分别是什么,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

成都创新互联公司专注于企业成都全网营销推广、网站重做改版、加查网站定制设计、自适应品牌网站建设、H5建站商城网站定制开发、集团公司官网建设、成都外贸网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为加查等各大城市提供网站开发制作服务。

导读  

虽然也有其他方式可以实现相同的效果,但是这几个操作可以让使用更加方便。

PyTorch是一个基于Python的科学包,用于使用一种称为张量的特殊数据类型执行高级操作。张量是具有规则形状和相同数据类型的数字、向量、矩阵或多维数组。PyTorch是NumPy包的另一种选择,它可以在GPU下使用。它也被用作进行深度学习研究的框架。

Pytorch中的5个非常有用的张量操作分别是什么

这5个操作是:

  • expand()
  • permute()
  • tolist()
  • narrow()
  • where()
 

1. expand()

将现有张量沿着值为1的维度扩展到新的维度。张量可以同时沿着任意一维或多维展开。如果你不想沿着一个特定的维度展开张量,你可以设置它的参数值为-1。

注意:只能扩展单个维度

# Example 1 - working 
a=torch.tensor([[[1,2,3],[4,5,6]]])
a.size()
>>torch.Size([1, 2, 3])

a.expand(2,2,3)
>>tensor([[[1, 2, 3],
         [4, 5, 6]],

        [[1, 2, 3],
         [4, 5, 6]]])
 

在这个例子中,张量的原始维数是[1,2,3]。它被扩展到[2,2,3]。

 

2. permute()

这个函数返回一个张量的视图,原始张量的维数根据我们的选择而改变。例如,如果原来的维数是[1,2,3],我们可以将它改为[3,2,1]。该函数以所需的维数顺序作为参数。

# Example 1 - working
a=torch.tensor([[[1,2,3],[4,5,6]]])
a.size()
>>torch.Size([1, 2, 3])

a.permute(2,1,0).size()
>>torch.Size([3, 2, 1])

a.permute(2,1,0)
>>tensor([[[1],
         [4]],

        [[2],
         [5]],

        [[3],
         [6]]])
 

在这个例子中,原始张量的维度是[1,2,3]。使用permuting,我将顺序设置为(2,1,0),这意味着新的维度应该是[3,2,1]。如图所示,张量的新视图重新排列了数字,使得张量的维度为[3,2,1]。

当我们想要对不同维数的张量进行重新排序,或者用不同阶数的矩阵进行矩阵乘法时,可以使用这个函数。

 

3. tolist()

这个函数以Python数字、列表或嵌套列表的形式返回张量。在此之后,我们可以对它执行任何python逻辑和操作。

# Example 1 - working
a=torch.tensor([[1,2,3],[4,5,6]])
a.tolist()
>> [[1, 2, 3], [4, 5, 6]]
 

在这个例子中,张量以嵌套列表的形式返回。

 

4. narrow()

这个函数返回一个新的张量,这个张量是原来张量的缩小版。这个函数的参数是输入张量、要缩小的维数、起始索引和新张量沿该维数的长度。它返回从索引start到索引(start+length-1)中的元素。

# Example 1 - working
a=torch.tensor([[1,2,3,4],[5,6,7,8],[9,10,11,12],[14,15,16,17]])
torch.narrow(a,1,2,2)
>> tensor([[ 3,  4],
        [ 7,  8],
        [11, 12],
        [16, 17]])
 

在这个例子中,张量要沿着第2维,也就是最里面的维度缩小。它接受列表中的元素,从索引2开始,到索引3(=2+2 -1,即start+length-1)。

Narrow()的工作原理类似于高级索引。例如,在一个2D张量中,使用[:,0:5]选择列0到5中的所有行。同样的,可以使用torch.narrow(1,0,5)。然而,在高维张量中,对于每个维度都使用range操作是很麻烦的。使用narrow()可以更快更方便地实现这一点。

 

5. where()

这个函数返回一个新的张量,其值在每个索引处都根据给定条件改变。这个函数的参数有:条件,第一个张量和第二个张量。在每个张量的值上检查条件(在条件中使用),如果为真,就用第一个张量中相同位置的值代替,如果为假,就用第二个张量中相同位置的值代替。

# Example 1 - working
a=torch.tensor([[[1,2,3],[4,5,6]]]).to(torch.float32)
b=torch.zeros(1,2,3)
torch.where(a%2==0,b,a)
>>tensor([[[1., 0., 3.],
         [0., 5., 0.]]])
 

这里,它检查张量a的值是否是偶数。如果是,则用张量b中的值替换,b中的值都是0,否则还是和原来一样。

此函数可用于设定阈值。如果张量中的值大于或小于某一数值,它们可以很容易地被替换。

关于Pytorch中的5个非常有用的张量操作分别是什么问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。


网页名称:Pytorch中的5个非常有用的张量操作分别是什么
本文URL:http://kswjz.com/article/gssohh.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流