扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
本文小编为大家详细介绍“MySQL的SELECT效率为什么会低”,内容详细,步骤清晰,细节处理妥当,希望这篇“mysql的SELECT效率为什么会低”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。
成都创新互联公司成立于2013年,我们提供高端成都网站建设、成都网站制作、成都网站设计、网站定制、全网整合营销推广、微信小程序、微信公众号开发、seo优化排名服务,提供专业营销思路、内容策划、视觉设计、程序开发来完成项目落地,为成都加固企业提供源源不断的流量和订单咨询。
先看一下最新《阿里java开发手册(泰山版)》中 MySQL 部分描述:
4 - 1. 【强制】在表查询中,一律不要使用 * 作为查询的字段列表,需要哪些字段必须明确写明。
说明:
增加查询分析器解析成本。
增减字段容易与 resultMap 配置不一致。
无用字段增加网络 消耗,尤其是 text 类型的字段。
这份最新手册可以关注Java技术栈公众号在后台回复手册获取,开发手册中比较概括的提到了几点原因,让我们深入一些看看:
用“SELECT * ”数据库需要解析更多的对象、字段、权限、属性等相关内容,在 SQL 语句复杂,硬解析较多的情况下,会对数据库造成沉重的负担。
增大网络开销;* 有时会误带上如log、IconMD5之类的无用且大文本字段,数据传输size会几何增涨。如果DB和应用程序不在同一台机器,这种开销非常明显
即使 mysql 服务器和客户端是在同一台机器上,使用的协议还是 tcp,通信也是需要额外的时间。
准确来说,长度超过 728 字节的时候,会先把超出的数据序列化到另外一个地方,因此读取这条记录会增加一次 io 操作。(MySQL InnoDB)
SELECT * 杜绝了覆盖索引的可能性,而基于MySQL优化器的“覆盖索引”策略又是速度极快,效率极高,业界极为推荐的查询优化方式。
例如,有一个表为t(a,b,c,d,e,f),其中,a为主键,b列有索引。
那么,在磁盘上有两棵 B+ 树,即聚集索引和辅助索引(包括单列索引、联合索引),分别保存(a,b,c,d,e,f)和(a,b),如果查询条件中where条件可以通过b列的索引过滤掉一部分记录,查询就会先走辅助索引,如果用户只需要a列和b列的数据,直接通过辅助索引就可以知道用户查询的数据。
如果用户使用select *,获取了不需要的数据,则首先通过辅助索引过滤数据,然后再通过聚集索引获取所有的列,这就多了一次b+树查询,速度必然会慢很多。
由于辅助索引的数据比聚集索引少很多,很多情况下,通过辅助索引进行覆盖索引(通过索引就能获取用户需要的所有列),都不需要读磁盘,直接从内存取,而聚集索引很可能数据在磁盘(外存)中(取决于buffer pool的大小和命中率),这种情况下,一个是内存读,一个是磁盘读,速度差异就很显著了,几乎是数量级的差异。
上面提到了辅助索引,在MySQL中辅助索引包括单列索引、联合索引(多列联合),单列索引就不再赘述了,这里提一下联合索引的作用。图解 MySQL 索引:B-树、B+树,这篇推荐看下。
联合索引 (a,b,c) 实际建立了 (a)、(a,b)、(a,b,c) 三个索引
我们可以将组合索引想成书的一级目录、二级目录、三级目录,如index(a,b,c),相当于a是一级目录,b是一级目录下的二级目录,c是二级目录下的三级目录。要使用某一目录,必须先使用其上级目录,一级目录除外。
如下:
建一个联合索引 (a,b,c) ,实际相当于建了 (a)、(a,b)、(a,b,c) 三个索引。每多一个索引,都会增加写操作的开销和磁盘空间的开销。对于大量数据的表,使用联合索引会大大的减少开销!
对联合索引 (a,b,c),如果有如下 sql 的,
SELECT a,b,c from table where a='xx' and b = 'xx';
那么 MySQL 可以直接通过遍历索引取得数据,而无需回表,这减少了很多的随机 io 操作。减少 io 操作,特别是随机 io 其实是 DBA 主要的优化策略。所以,在真正的实际应用中,覆盖索引是主要的提升性能的优化手段之一。
索引列多,通过联合索引筛选出的数据越少。比如有 1000W 条数据的表,有如下SQL:
select col1,col2,col3 from table where col1=1 and col2=2 and col3=3;
假设:假设每个条件可以筛选出 10% 的数据。
A. 如果只有单列索引,那么通过该索引能筛选出 1000W10%=100w 条数据,然后再回表从 100w 条数据中找到符合 col2=2 and col3= 3 的数据,然后再排序,再分页,以此类推(递归);
B. 如果是(col1,col2,col3)联合索引,通过三列索引筛选出 1000w10% 10% *10%=1w,效率提升可想而知!
答案自然是否定的
数据量小的表不需要建立索引,建立会增加额外的索引开销
不经常引用的列不要建立索引,因为不常用,即使建立了索引也没有多大意义
经常频繁更新的列不要建立索引,因为肯定会影响插入或更新的效率
数据重复且分布平均的字段,因此他建立索引就没有太大的效果(例如性别字段,只有男女,不适合建立索引)
数据变更需要维护索引,意味着索引越多维护成本越高。
更多的索引也需要更多的存储空间
读到这里,这篇“mysql的SELECT效率为什么会低”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注创新互联行业资讯频道。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流