扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章主要介绍了Spark1.0.0如何实现伪分布安装,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
创新互联主要从事成都网站建设、成都网站制作、网页设计、企业做网站、公司建网站等业务。立足成都服务扎赉特,10年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:13518219792
软件准备:
spark-1.0.0-bin-hadoop1.tgz 下载地址:spark1.0.0
scala-2.10.4.tgz 下载下载:Scala 2.10.4
hadoop-1.2.1-bin.tar.gz 下载地址:hadoop-1.2.1-bin.tar.gz
jdk-7u60-linux-i586.tar.gz 下载地址:去官网下载就行,这个1.7.x都行
hadoop-1.2.1安装步骤,请看: http://my.oschina.net/dataRunner/blog/292584
1.解压:
tar -zxvf scala-2.10.4.tgz mv scala-2.10.4 scala tar -zxvf spark-1.0.0-bin-hadoop1.tgz mv spark-1.0.0-bin-hadoop1 spark
2. 配置环境变量:
vim /etc/profile (在最后一行加入以下内容就行) export HADOOP_HOME_WARN_SUPPRESS=1 export JAVA_HOME=/home/big_data/jdk export JRE_HOME=${JAVA_HOME}/jre export CLASS_PATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib export HADOOP_HOME=/home/big_data/hadoop export HIVE_HOME=/home/big_data/hive export SCALA_HOME=/home/big_data/scala export SPARK_HOME=/home/big_data/spark export PATH=.:$SPARK_HOME/bin:$SCALA_HOME/bin:$HIVE_HOME/bin:$HADOOP_HOME/bin:$JAVA_HOME/bin:$PATH
3.修改spark的spark-env.sh文件
cd spark/conf cp spark-env.sh.template spark-env.sh vim spark-env.sh (在最后一行加入以下内容就行) export JAVA_HOME=/home/big_data/jdk export SCALA_HOME=/home/big_data/scala export SPARK_MASTER_IP=192.168.80.100 export SPARK_WORKER_MEMORY=200m export HADOOP_CONF_DIR=/home/big_data/hadoop/conf
然后就配置完毕勒!!!(就这么简单,艹,很多人都知道,但是共享的人太少勒)
hadoop-1.2.1测试步骤,请看: http://my.oschina.net/dataRunner/blog/292584
1.验证scala
[root@master ~]# scala -version Scala code runner version 2.10.4 -- Copyright 2002-2013, LAMP/EPFL [root@master ~]# [root@master big_data]# scala Welcome to Scala version 2.10.4 (Java HotSpot(TM) Client VM, Java 1.7.0_60). Type in expressions to have them evaluated. Type :help for more information. scala> 1+1 res0: Int = 2 scala> :q
2.验证spark (先启动hadoop-dfs.sh)
[root@master big_data]# cd spark [root@master spark]# cd sbin/start-all.sh ( 也可以分别启动 [root@master spark]$ sbin/start-master.sh 可以通过 http://master:8080/ 看到对应界面 [root@master spark]$ sbin/start-slaves.sh park://master:7077 可以通过 http://master:8081/ 看到对应界面 ) [root@master spark]# jps [root@master ~]# jps 4629 NameNode (hadoop的) 5007 Master (spark的) 6150 Jps 4832 SecondaryNameNode (hadoop的) 5107 Worker (spark的) 4734 DataNode (hadoop的) 可以通过 http://192.168.80.100:8080/ 看到对应界面 [root@master big_data]# spark-shell Spark assembly has been built with Hive, including Datanucleus jars on classpath 14/07/20 21:41:04 INFO spark.SecurityManager: Changing view acls to: root 14/07/20 21:41:04 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root) 14/07/20 21:41:04 INFO spark.HttpServer: Starting HTTP Server 14/07/20 21:41:05 INFO server.Server: jetty-8.y.z-SNAPSHOT 14/07/20 21:41:05 INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:43343 Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 1.0.0 /_/ Using Scala version 2.10.4 (Java HotSpot(TM) Client VM, Java 1.7.0_60) 。。。 scala> 可以通过 http://192.168.80.100:4040/ 看到对应界面 (随便上传一个文件,里面随便一些英文单词,到hdfs上面) scala> val file=sc.textFile("hdfs://master:9000/input") 14/07/20 21:51:05 INFO storage.MemoryStore: ensureFreeSpace(608) called with curMem=31527, maxMem=311387750 14/07/20 21:51:05 INFO storage.MemoryStore: Block broadcast_1 stored as values to memory (estimated size 608.0 B, free 296.9 MB) file: org.apache.spark.rdd.RDD[String] = MappedRDD[5] at textFile at:12 scala> val count=file.flatMap(line=>line.split(" ")).map(word=>(word,1)).reduceByKey(_+_) 14/07/20 21:51:14 INFO mapred.FileInputFormat: Total input paths to process : 1 count: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[10] at reduceByKey at :14 scala> count.collect() 14/07/20 21:51:48 INFO spark.SparkContext: Job finished: collect at :17, took 2.482381535 s res0: Array[(String, Int)] = Array((previously-registered,1), (this,3), (Spark,1), (it,3), (original,1), (than,1), (its,1), (previously,1), (have,2), (upon,1), (order,2), (whenever,1), (it’s,1), (could,3), (Configuration,1), (Master's,1), (SPARK_DAEMON_JAVA_OPTS,1), (This,2), (which,2), (applications,2), (register,,1), (doing,1), (for,3), (just,2), (used,1), (any,1), (go,1), ((equivalent,1), (Master,4), (killing,1), (time,1), (availability,,1), (stop-master.sh,1), (process.,1), (Future,1), (node,1), (the,9), (Workers,1), (however,,1), (up,2), (Details,1), (not,3), (recovered,1), (process,1), (enable,3), (spark-env,1), (enough,1), (can,4), (if,3), (While,2), (provided,1), (be,5), (mode.,1), (minute,1), (When,1), (all,2), (written,1), (store,1), (enter,1), (then,1), (as,1), (officially,1)... scala> scala> count.saveAsTextFile("hdfs://master:9000/output") (结果保存到hdfs上的/output文件夹下) scala> :q Stopping spark context. [root@master ~]# hadoop fs -ls / Found 3 items drwxr-xr-x - root supergroup 0 2014-07-18 21:10 /home -rw-r--r-- 1 root supergroup 1722 2014-07-18 06:18 /input drwxr-xr-x - root supergroup 0 2014-07-20 21:53 /output [root@master ~]# [root@master ~]# hadoop fs -cat /output/p* 。。。 (mount,1) (production-level,1) (recovery).,1) (Workers/applications,1) (perspective.,1) (so,2) (and,1) (ZooKeeper,2) (System,1) (needs,1) (property Meaning,1) (solution,1) (seems,1)
感谢你能够认真阅读完这篇文章,希望小编分享的“Spark1.0.0如何实现伪分布安装”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流