扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
本篇内容主要讲解“Pytorch的使用技巧有哪些”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Pytorch的使用技巧有哪些”吧!
创新互联专注于洮北网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供洮北营销型网站建设,洮北网站制作、洮北网页设计、洮北网站官网定制、微信平台小程序开发服务,打造洮北网络公司原创品牌,更为您提供洮北网站排名全网营销落地服务。
训练模型,最常看的指标就是 Loss。我们可以根据 Loss 的收敛情况,初步判断模型训练的好坏。
如果,Loss 值突然上升了,那说明训练有问题,需要检查数据和代码。
如果,Loss 值趋于稳定,那说明训练完毕了。
观察 Loss 情况,最直观的方法,就是绘制 Loss 曲线图。
通过绘图,我们可以很清晰的看到,左图还有收敛空间,而右图已经完全收敛。
通过 Loss 曲线,我们可以分析模型训练的好坏,模型是否训练完成,起到一个很好的“监控”作用。
绘制 Loss 曲线图,第一步就是需要保存训练过程中的 Loss 值。
一个最简单的方法是使用,sys.stdout 标准输出重定向,简单好用,实乃“炼丹”必备“良宝”。
import os import sys class Logger(): def __init__(self, filename="log.txt"): self.terminal = sys.stdout self.log = open(filename, "w") def write(self, message): self.terminal.write(message) self.log.write(message) def flush(self): pass sys.stdout = Logger() print("Jack Cui") print("https://cuijiahua.com") print("https://mp.weixin.qq.com/s/OCWwRVDFNslIuKyiCVUoTA")
代码很简单,创建一个 log.py 文件,自己写一个 Logger 类,并采用 sys.stdout 重定向输出。
在 Terminal 中,不仅可以使用 print 打印结果,同时也会将结果保存到 log.txt 文件中。
运行 log.py,打印 print 内容的同时,也将内容写入了 log.txt 文件中。
使用这个代码,就可以在打印 Loss 的同时,将结果保存到指定的 txt 中,比如保存上篇文章训练 UNet 的 Loss。
Matplotlib 是一个 Python 的绘图库,简单好用。
简单几行命令,就可以绘制曲线图、散点图、条形图、直方图、饼图等等。
在深度学习中,一般就是绘制曲线图,比如 Loss 曲线、Acc 曲线。
举一个,简单的例子。
使用 sys.stdout 保存的 train_loss.txt,绘制 Loss 曲线。
train_loss.txt 下载地址:点击查看
思路非常简单,读取 txt 内容,解析 txt 内容,使用 Matplotlib 绘制曲线。
import matplotlib.pyplot as plt # Jupyter notebook 中开启 # %matplotlib inline with open('train_loss.txt', 'r') as f: train_loss = f.readlines() train_loss = list(map(lambda x:float(x.strip()), train_loss)) x = range(len(train_loss)) y = train_loss plt.plot(x, y, label='train loss', linewidth=2, color='r', marker='o', markerfacecolor='r', markersize=5) plt.xlabel('Epoch') plt.ylabel('Loss Value') plt.legend() plt.show()
指定 x 和 y 对应的值,就可以绘制。
是不是很简单?
说到保存日志,那不得不提 Python 的内置标准模块 Logging,它主要用于输出运行日志,可以设置输出日志的等级、日志保存路径、日志文件回滚等,同时,我们也可以设置日志的输出格式。
import logging def get_logger(LEVEL, log_file = None): head = '[%(asctime)-15s] [%(levelname)s] %(message)s' if LEVEL == 'info': logging.basicConfig(level=logging.INFO, format=head) elif LEVEL == 'debug': logging.basicConfig(level=logging.DEBUG, format=head) logger = logging.getLogger() if log_file != None: fh = logging.FileHandler(log_file) logger.addHandler(fh) return logger logger = get_logger('info') logger.info('Jack Cui') logger.info('https://cuijiahua.com') logger.info('https://mp.weixin.qq.com/s/OCWwRVDFNslIuKyiCVUoTA')
只需要几行代码,进行一个简单的封装使用。使用函数 get_logger 创建一个级别为 info 的 logger,如果指定 log_file,则会对日志进行保存。
logging 默认支持的日志一共有 5 个等级:
日志级别等级 CRITICAL > ERROR > WARNING > INFO > DEBUG。
默认的日志级别设置为 WARNING,也就是说如果不指定日志级别,只会显示大于等于 WARNING 级别的日志。
例如:
import logging logging.debug("debug_msg") logging.info("info_msg") logging.warning("warning_msg") logging.error("error_msg") logging.critical("critical_msg")
运行结果:
WARNING:root:warning_msg ERROR:root:error_msg CRITICAL:root:critical_msg
可以看到 info 和 debug 级别的日志不会输出,默认的日志格式也比较简单。
默认的日志格式为日志级别:Logger名称:用户输出消息
当然,我们可以通过,logging.basicConfig 的 format 参数,设置日志格式。
字段有很多,可谓应有尽有,足以满足我们定制化的需求。
上文介绍的“法宝”,并非针对深度学习“炼丹”使用的工具。
而 TensorboardX 则不同,它是专门用于深度学习“炼丹”的高级“法宝”。
早些时候,很多人更喜欢用 Tensorflow 的原因之一,就是 Tensorflow 框架有个一个很好的可视化工具 Tensorboard。
Pytorch 要想使用 Tensorboard 配置起来费劲儿不说,还有很多 Bug。
Pytorch 1.1.0 版本发布后,打破了这个局面,TensorBoard 成为了 Pytorch 的正式可用组件。
在 Pytorch 中,这个可视化工具叫做 TensorBoardX,其实就是针对 Tensorboard 的一个封装,使得 PyTorch 用户也能够调用 Tensorboard。
TensorboardX 安装也非常简单,使用 pip 即可安装。
pip install tensorboardX
tensorboardX 使用也很简单,编写如下代码。
from tensorboardX import SummaryWriter # 创建 writer1 对象 # log 会保存到 runs/exp 文件夹中 writer1 = SummaryWriter('runs/exp') # 使用默认参数创建 writer2 对象 # log 会保存到 runs/日期_用户名 格式的文件夹中 writer2 = SummaryWriter() # 使用 commet 参数,创建 writer3 对象 # log 会保存到 runs/日期_用户名_resnet 格式的文件中 writer3 = SummaryWriter(comment='_resnet')
使用的时候,创建一个 SummaryWriter 对象即可,以上展示了三种初始化 SummaryWriter 的方法:
提供一个路径,将使用该路径来保存日志
无参数,默认将使用 runs/日期_用户名 路径来保存日志
提供一个 comment 参数,将使用 runs/日期_用户名+comment 路径来保存日志
运行结果:
有了 writer 我们就可以往日志里写入数字、图片、甚至声音等数据。
这个是最简单的,使用 add_scalar 方法来记录数字常量。
add_scalar(tag, scalar_value, global_step=None, walltime=None)
总共 4 个参数。
tag (string): 数据名称,不同名称的数据使用不同曲线展示
scalar_value (float): 数字常量值
global_step (int, optional): 训练的 step
walltime (float, optional): 记录发生的时间,默认为 time.time()
需要注意,这里的 scalar_value 一定是 float 类型,如果是 PyTorch scalar tensor,则需要调用 .item() 方法获取其数值。我们一般会使用 add_scalar 方法来记录训练过程的 loss、accuracy、learning rate 等数值的变化,直观地监控训练过程。
运行如下代码:
from tensorboardX import SummaryWriter writer = SummaryWriter('runs/scalar_example') for i in range(10): writer.add_scalar('quadratic', i**2, global_step=i) writer.add_scalar('exponential', 2**i, global_step=i) writer.close()
通过 add_scalar 往日志里写入数字,日志保存到 runs/scalar_example中,writer 用完要记得 close,否则无法保存数据。
在 cmd 中使用如下命令:
tensorboard --logdir=runs/scalar_example --port=8088
指定日志地址,使用端口号,在浏览器中,就可以使用如下地址,打开 Tensorboad。
http://localhost:8088/
省去了我们自己写代码可视化的麻烦。
使用 add_image 方法来记录单个图像数据。注意,该方法需要 pillow 库的支持。
add_image(tag, img_tensor, global_step=None, walltime=None, dataformats='CHW')
参数:
tag (string):数据名称
img_tensor (torch.Tensor / numpy.array):图像数据
global_step (int, optional):训练的 step
walltime (float, optional):记录发生的时间,默认为 time.time()
dataformats (string, optional):图像数据的格式,默认为 'CHW',即 Channel x Height x Width,还可以是 'CHW'、'HWC' 或 'HW' 等
我们一般会使用 add_image 来实时观察生成式模型的生成效果,或者可视化分割、目标检测的结果,帮助调试模型。
from tensorboardX import SummaryWriter from urllib.request import urlretrieve import cv2 urlretrieve(url = 'https://raw.githubusercontent.com/Jack-Cherish/Deep-Learning/master/Pytorch-Seg/lesson-2/data/train/label/0.png',filename = '1.jpg') urlretrieve(url = 'https://raw.githubusercontent.com/Jack-Cherish/Deep-Learning/master/Pytorch-Seg/lesson-2/data/train/label/1.png',filename = '2.jpg') urlretrieve(url = 'https://raw.githubusercontent.com/Jack-Cherish/Deep-Learning/master/Pytorch-Seg/lesson-2/data/train/label/2.png',filename = '3.jpg') writer = SummaryWriter('runs/image_example') for i in range(1, 4): writer.add_image('UNet_Seg', cv2.cvtColor(cv2.imread('{}.jpg'.format(i)), cv2.COLOR_BGR2RGB), global_step=i, dataformats='HWC') writer.close()
代码就是下载上篇文章数据集里的三张图片,然后使用 Tensorboard 可视化处理来,使用 8088 端口开打 Tensorboard:
tensorboard --logdir=runs/image_example --port=8088
运行结果:
试想一下,一边训练,一边输出图片结果,是不是很酸爽呢?
Tensorboard 中常用的 Scalar 和 Image,直方图、运行图、嵌入向量等,可以查看官方手册进行学习,方法都是类似的,简单好用。
到此,相信大家对“Pytorch的使用技巧有哪些”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流