扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章主要介绍了java中fail-fast示例,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获。下面让小编带着大家一起了解一下。
成都创新互联公司是一个技术型专业的建站公司,致力于为广大企业、创业者打造切实有效的PC站、WAP站、APP站点等企业网站。无论是企业宣传的成都营销网站建设、致力于营销的电商网站、内容资讯分享的各行业网站或其他类型网站,我们都从网站前期定位分析策划、技术架构,到网站界面设计、创意表现、站点架构搭建以及后续访问监控、维护、网站托管运营反馈建议等提供整套服务。
在JDK的Collection中我们时常会看到类似于这样的话:
例如,ArrayList:
注意,迭代器的快速失败行为无法得到保证,因为一般来说,不可能对是否出现不同步并发修改做出任何硬性保证。快速失败迭代器会尽 最大努力抛出 ConcurrentModificationException。因此,为提高这类迭代器的正确性而编写一个依赖于此异常的程序是错误的做法:迭 代器的快速失败行为应该仅用于检测 bug。
HashMap中:
注意,迭代器的快速失败行为不能得到保证,一般来说,存在非同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大 努力抛出 ConcurrentModificationException。因此,编写依赖于此异常的程序的做法是错误的,正确做法是:迭代器的快速失败行为应 该仅用于检测程序错误。
在这两段话中反复地提到”快速失败”。那么何为”快速失败”机制呢?
“快速失败”也就是fail-fast,它是Java集合的一种错误检测机制。当多个线程对集合进行结构上的改变的操作时,有可能会产生fail-fast机制。记住是有可能,而不是一定。例如:假设存在两个线程(线程1、线程2),线程1通过Iterator在遍历集合A中的元素,在某个时候线程2修改了集合A的结构(是结构上面的修改,而不是简单的修改集合元素的内容),那么这个时候程序就会抛出 ConcurrentModificationException 异常,从而产生fail-fast机制。
一、fail-fast示例
public class FailFastTest { private static Listlist = new ArrayList<>(); /** * @desc:线程one迭代list * @Project:test * @file:FailFastTest.java * @Authro:chenssy * @data:2014年7月26日 */ private static class threadOne extends Thread{ public void run() { Iterator iterator = list.iterator(); while(iterator.hasNext()){ int i = iterator.next(); System.out.println("ThreadOne 遍历:" + i); try { Thread.sleep(10); } catch (InterruptedException e) { e.printStackTrace(); } } } } /** * @desc:当i == 3时,修改list * @Project:test * @file:FailFastTest.java * @Authro:chenssy * @data:2014年7月26日 */ private static class threadTwo extends Thread{ public void run(){ int i = 0 ; while(i < 6){ System.out.println("ThreadTwo run:" + i); if(i == 3){ list.remove(i); } i++; } } } public static void main(String[] args) { for(int i = 0 ; i < 10;i++){ list.add(i); } new threadOne().start(); new threadTwo().start(); } }
运行结果:
ThreadOne 遍历:0 ThreadTwo run:0 ThreadTwo run:1 ThreadTwo run:2 ThreadTwo run:3 ThreadTwo run:4 ThreadTwo run:5 Exception in thread "Thread-0" java.util.ConcurrentModificationException at java.util.ArrayList$Itr.checkForComodification(Unknown Source) at java.util.ArrayList$Itr.next(Unknown Source) at test.ArrayListTest$threadOne.run(ArrayListTest.java:23
二、fail-fast产生原因
通过上面的示例和讲解,我初步知道fail-fast产生的原因就在于程序在对 collection 进行迭代时,某个线程对该 collection 在结构上对其做了修改,这时迭代器就会抛出 ConcurrentModificationException 异常信息,从而产生 fail-fast。
要了解fail-fast机制,我们首先要对ConcurrentModificationException 异常有所了解。当方法检测到对象的并发修改,但不允许这种修改时就抛出该异常。同时需要注意的是,该异常不会始终指出对象已经由不同线程并发修改,如果单线程违反了规则,同样也有可能会抛出改异常。
诚然,迭代器的快速失败行为无法得到保证,它不能保证一定会出现该错误,但是快速失败操作会尽最大努力抛出ConcurrentModificationException异常,所以因此,为提高此类操作的正确性而编写一个依赖于此异常的程序是错误的做法,正确做法是:ConcurrentModificationException 应该仅用于检测 bug。下面我将以ArrayList为例进一步分析fail-fast产生的原因。
从前面我们知道fail-fast是在操作迭代器时产生的。现在我们来看看ArrayList中迭代器的源代码:
private class Itr implements Iterator{ int cursor; int lastRet = -1; int expectedModCount = ArrayList.this.modCount; public boolean hasNext() { return (this.cursor != ArrayList.this.size); } public E next() { checkForComodification(); /** 省略此处代码 */ } public void remove() { if (this.lastRet < 0) throw new IllegalStateException(); checkForComodification(); /** 省略此处代码 */ } final void checkForComodification() { if (ArrayList.this.modCount == this.expectedModCount) return; throw new ConcurrentModificationException(); } }
从上面的源代码我们可以看出,迭代器在调用next()、remove()方法时都是调用checkForComodification()方法,该方法主要就是检测modCount == expectedModCount ? 若不等则抛出ConcurrentModificationException 异常,从而产生fail-fast机制。所以要弄清楚为什么会产生fail-fast机制我们就必须要用弄明白为什么modCount != expectedModCount ,他们的值在什么时候发生改变的。
expectedModCount 是在Itr中定义的:int expectedModCount = ArrayList.this.modCount;所以他的值是不可能会修改的,所以会变的就是modCount。modCount是在 AbstractList 中定义的,为全局变量:
protected transient int modCount = 0;
那么他什么时候因为什么原因而发生改变呢?请看ArrayList的源码:
public boolean add(E paramE) { ensureCapacityInternal(this.size + 1); /** 省略此处代码 */ } private void ensureCapacityInternal(int paramInt) { if (this.elementData == EMPTY_ELEMENTDATA) paramInt = Math.max(10, paramInt); ensureExplicitCapacity(paramInt); } private void ensureExplicitCapacity(int paramInt) { this.modCount += 1; //修改modCount /** 省略此处代码 */ } public boolean remove(Object paramObject) { int i; if (paramObject == null) for (i = 0; i < this.size; ++i) { if (this.elementData[i] != null) continue; fastRemove(i); return true; } else for (i = 0; i < this.size; ++i) { if (!(paramObject.equals(this.elementData[i]))) continue; fastRemove(i); return true; } return false; } private void fastRemove(int paramInt) { this.modCount += 1; //修改modCount /** 省略此处代码 */ } public void clear() { this.modCount += 1; //修改modCount /** 省略此处代码 */ }
从上面的源代码我们可以看出,ArrayList中无论add、remove、clear方法只要是涉及了改变ArrayList元素的个数的方法都会导致modCount的改变。所以我们这里可以初步判断由于expectedModCount 得值与modCount的改变不同步,导致两者之间不等从而产生fail-fast机制。知道产生fail-fast产生的根本原因了,我们可以有如下场景:
有两个线程(线程A,线程B),其中线程A负责遍历list、线程B修改list。线程A在遍历list过程的某个时候(此时expectedModCount = modCount=N),线程启动,同时线程B增加一个元素,这是modCount的值发生改变(modCount + 1 = N + 1)。线程A继续遍历执行next方法时,通告checkForComodification方法发现expectedModCount = N ,而modCount = N + 1,两者不等,这时就抛出ConcurrentModificationException 异常,从而产生fail-fast机制。
所以,直到这里我们已经完全了解了fail-fast产生的根本原因了。知道了原因就好找解决办法了。
三、fail-fast解决办法
通过前面的实例、源码分析,我想各位已经基本了解了fail-fast的机制,下面我就产生的原因提出解决方案。这里有两种解决方案:
方案一: 在遍历过程中所有涉及到改变modCount值得地方全部加上synchronized或者直接使用Collections.synchronizedList,这样就可以解决。但是不推荐,因为增删造成的同步锁可能会阻塞遍历操作。
方案二: 使用CopyOnWriteArrayList来替换ArrayList。推荐使用该方案。
以上就是fail-fast机制的详细内容,更多请关注创新互联其它相关文章!
感谢你能够认真阅读完这篇文章,希望小编分享java中fail-fast示例内容对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,遇到问题就找创新互联,详细的解决方法等着你来学习!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流