扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章主要为大家展示了“c#如何实现车辆的轮廓识别”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“c#如何实现车辆的轮廓识别”这篇文章吧。
十多年的宁江网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。营销型网站建设的优势是能够根据用户设备显示端的尺寸不同,自动调整宁江建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联从事“宁江网站设计”,“宁江网站推广”以来,每个客户项目都认真落实执行。
场景
实现了车辆的轮廓识别,并且已经提取轮廓的最小矩形范围,现在需要知道车尾离矩形最近的两个点,可能有点大材小用
代码
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include
using namespace cv;
using namespace std;
void Dilate( InputArray src, OutputArray dst)
{
int dilation_type = MORPH_RECT;
int dilation_size = 10;
Mat dielem = getStructuringElement( dilation_type,
Size( 2*dilation_size + 1, 2*dilation_size+1 ),
Point( dilation_size, dilation_size ) );
///膨胀操作
dilate( src, dst, dielem );
}
/*
该函数主要是捕获图片中完整出现轮廓的车辆,判断条件为
车辆的轮廓的Y坐标不能大于图片的长度,其次过滤掉面积过小
的轮廓,很可能是车镜或者帧间差分将车辆拆分成两段的误差
*/
void CaptureCompleteVehicle(Mat &srcMat, Mat &grayMat)
{
vector
vector
findContours(grayMat, contours,hierarchy,RETR_EXTERNAL,CHAIN_APPROX_NONE,Point());
Mat dstMat=Mat::zeros(grayMat.size(),CV_8UC1);
Mat contourMat;
srcMat.copyTo(contourMat);
int picHeight = grayMat.size().height;
bool bTouchBotton = false;
bool bTouchTop = false;
vector
for (int i=0; i { mu[i] = moments(contours[i], false); } vector for (int i=0; i { mc[i] = Point2d(mu[i].m10 / mu[i].m00, mu[i].m01 / mu[i].m00); } for(int i=0; i { if (contourArea(contours[i]) < 10000) continue; bTouchBotton = false; bTouchTop = false; for (int k=0; k { Point2f pos = contours[i][k]; if ((pos.y +10) > picHeight) { bTouchBotton = true; break; } if (pos.y == 0) { bTouchTop = true; break; } } if (bTouchBotton || bTouchTop) continue; drawContours(dstMat, contours, i, Scalar(255, 0, 0), 1, 8, hierarchy); RotatedRect rect=minAreaRect(contours[i]); Point2f P[4]; rect.points(P); int leftBottonIndex = 0; for(int j=0; j<=3; j++) { line(contourMat, P[j], P[(j+1)%4], Scalar(255, 0, 0), 2); if ((P[j].x < mc[i].x) && (P[j].y > mc[i].y)) { leftBottonIndex = j; } } cv::Rect re(P[leftBottonIndex].x - 20, P[leftBottonIndex].y - 20 , 40, 40); rectangle(contourMat, re, Scalar(0, 255, 0), 4); circle(contourMat, mc[i], 5, Scalar(0, 0, 255), -1, 8, 0); } imshow("NewAreaRect", contourMat); } int main(int argc,char *argv[]) { VideoCapture videoCap("E:/smoky-cars/positive/大庆东路与水机路交叉口(东北)_冀BU0157_02_141502_01_3_50.wh364"); if(!videoCap.isOpened()) return -1; double videoFPS=videoCap.get(CV_CAP_PROP_FPS); //获取帧率 double videoPause=1000/videoFPS; Mat framePrePre; //上上一帧 Mat framePre; //上一帧 Mat frameNow; //当前帧 Mat frameDet; //运动物体 videoCap>>framePrePre; videoCap>>framePre; cvtColor(framePrePre,framePrePre,CV_RGB2GRAY); cvtColor(framePre,framePre,CV_RGB2GRAY); int save=0; while(true) { videoCap>>frameNow; if(frameNow.empty()||waitKey(videoPause)==27) break; cvtColor(frameNow,frameNow,CV_RGB2GRAY); Mat Det1; Mat Det2; absdiff(framePrePre,framePre,Det1); //帧差1 absdiff(framePre,frameNow,Det2); //帧差2 threshold(Det1,Det1,0,255,CV_THRESH_OTSU); //自适应阈值化 threshold(Det2,Det2,0,255,CV_THRESH_OTSU); Mat element=getStructuringElement(0,Size(3,3)); //膨胀核 dilate(Det1,Det1,element); //膨胀 dilate(Det2,Det2,element); bitwise_and(Det1,Det2,frameDet); framePrePre=framePre; framePre=frameNow; Dilate(frameDet, frameDet); CaptureCompleteVehicle(frameNow, frameDet); waitKey(1000); } return 0; } 以上是“c#如何实现车辆的轮廓识别”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!
网页名称:c#如何实现车辆的轮廓识别
本文地址:http://kswjz.com/article/ggpipo.html
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流