扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
本篇文章为大家展示了使用matplotlib怎么实现一个多边形选区功能,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
成都创新互联科技有限公司专业互联网基础服务商,为您提供服务器托管,高防主机,成都IDC机房托管,成都主机托管等互联网服务。多边形选区是一种常见的对象选择方式,在一个子图中,单击鼠标左键即构建一个多边形的端点,最后一个端点与第一个端点重合即完成多边形选区,选区即为多个端点构成的多边形。在matplotlib中的多边形选区属于部件(widgets),matplotlib中的部件都是中性(neutral )的,即与具体后端实现无关。
多边形选区具体实现定义为matplotlib.widgets.PolygonSelector类,继承关系为:Widget->AxesWidget->_SelectorWidget->PolygonSelector。
PolygonSelector类的签名为class matplotlib.widgets.PolygonSelector(ax, onselect, useblit=False, lineprops=None, markerprops=None, vertex_select_radius=15)
PolygonSelector类构造函数的参数为:
ax:多边形选区生效的子图,类型为matplotlib.axes.Axes的实例。
onselect:多边形选区完成后执行的回调函数,函数签名为def onselect( vertices),vertices数据类型为列表,列表元素格式为(xdata,ydata)元组。
drawtype:多边形选区的外观,取值范围为{"box", "line", "none"},"box"为多边形框,"line"为多边形选区对角线,"none"无外观,类型为字符串,默认值为"box"。
lineprops:多边形选区线条的属性,默认值为dict(color='k', linestyle='-', linewidth=2, alpha=0.5)。
markerprops:多边形选区端点的属性,默认值为dict(marker='o', markersize=7, mec='k', mfc='k', alpha=0.5)。
vertex_select_radius:多边形端点的选择半径,浮点数,默认值为15,用于端点选择或者多边形闭合。
PolygonSelector类中的state_modifier_keys公有变量 state_modifier_keys定义了操作快捷键,类型为字典。
“move_all”: 移动已存在的选区,默认为"shift"。
“clear”:清除现有选区,默认为 "escape",即esc键。
“move_vertex”:正方形选区,默认为"control"。
PolygonSelector类中的verts特性返回多边形选区中的多有端点,类型为列表,元素为(x,y)元组,即端点的坐标元组。
官方案例,https://matplotlib.org/gallery/widgets/polygon_selector_demo.html
单击鼠标左键创建端点,最终点击初始端点闭合多边形,形成多边形选区。选区外的数据元素颜色变淡,选区内数据颜色保持不变。
按esc键取消选区。按shift键鼠标可以移动多边形选区位置,按ctrl键鼠标可以移动多边形选区某个端点的位置。退出程序时,控制台输出选区内数据元素的坐标。
控制台输出:
Selected points:
[[2.0 2.0]
[1.0 3.0]
[2.0 3.0]]
import numpy as np from matplotlib.widgets import PolygonSelector from matplotlib.path import Path class SelectFromCollection: """ Select indices from a matplotlib collection using `PolygonSelector`. Selected indices are saved in the `ind` attribute. This tool fades out the points that are not part of the selection (i.e., reduces their alpha values). If your collection has alpha < 1, this tool will permanently alter the alpha values. Note that this tool selects collection objects based on their *origins* (i.e., `offsets`). Parameters ---------- ax : `~matplotlib.axes.Axes` Axes to interact with. collection : `matplotlib.collections.Collection` subclass Collection you want to select from. alpha_other : 0 <= float <= 1 To highlight a selection, this tool sets all selected points to an alpha value of 1 and non-selected points to *alpha_other*. """ def __init__(self, ax, collection, alpha_other=0.3): self.canvas = ax.figure.canvas self.collection = collection self.alpha_other = alpha_other self.xys = collection.get_offsets() self.Npts = len(self.xys) # Ensure that we have separate colors for each object self.fc = collection.get_facecolors() if len(self.fc) == 0: raise ValueError('Collection must have a facecolor') elif len(self.fc) == 1: self.fc = np.tile(self.fc, (self.Npts, 1)) self.poly = PolygonSelector(ax, self.onselect) self.ind = [] def onselect(self, verts): path = Path(verts) self.ind = np.nonzero(path.contains_points(self.xys))[0] self.fc[:, -1] = self.alpha_other self.fc[self.ind, -1] = 1 self.collection.set_facecolors(self.fc) self.canvas.draw_idle() def disconnect(self): self.poly.disconnect_events() self.fc[:, -1] = 1 self.collection.set_facecolors(self.fc) self.canvas.draw_idle() if __name__ == '__main__': import matplotlib.pyplot as plt fig, ax = plt.subplots() grid_size = 5 grid_x = np.tile(np.arange(grid_size), grid_size) grid_y = np.repeat(np.arange(grid_size), grid_size) pts = ax.scatter(grid_x, grid_y) selector = SelectFromCollection(ax, pts) print("Select points in the figure by enclosing them within a polygon.") print("Press the 'esc' key to start a new polygon.") print("Try holding the 'shift' key to move all of the vertices.") print("Try holding the 'ctrl' key to move a single vertex.") plt.show() selector.disconnect() # After figure is closed print the coordinates of the selected points print('\nSelected points:') print(selector.xys[selector.ind])
上述内容就是使用matplotlib怎么实现一个多边形选区功能,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注创新互联行业资讯频道。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流