使用OpenCV和MFC怎么实现一个人脸识别功能-成都快上网建站

使用OpenCV和MFC怎么实现一个人脸识别功能

使用OpenCV 和MFC怎么实现一个人脸识别功能?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

创新互联建站是一家专业提供复兴企业网站建设,专注与成都网站建设、做网站HTML5建站、小程序制作等业务。10年已为复兴众多企业、政府机构等服务。创新互联专业网站设计公司优惠进行中。

1 设置控件

首先新建一个基于Dialog的MFC程序的工程,工程名为FaceDetect ;
然后在IDD_FACEDETECT_DIALOG对话框中添加一个Picture 控件,ID命名为:IDC_PICTURE;添加一个Button控件,Caption命名为 “检测”,ID命名为IDC_START,将原来自动生成的的OK按钮的Caption改为“退出”;
删除原来的Text控件和“Cancel”控件。

2 定义变量

在FaceDetectDlg.h开头添加以下几行代码

#pragma once
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp" 
#include "opencv2/imgproc/imgproc.hpp”
using namespace std;
using namespace cv;

然后在CFaceDetectDlg类定义一下几个变量

public:
 String face_cascade_name; 
 String eyes_cascade_name; 
 CascadeClassifier face_cascade;
 CascadeClassifier eyes_cascade;
 VideoCapture capture;

3 对定义的变量初始化

CFaceDetectDlg::CFaceDetectDlg(CWnd* pParent /*=NULL*/)
 : CDialogEx(CFaceDetectDlg::IDD, pParent)
{
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
 string face_cascade_name = "";
 string eyes_cascade_name = "";
}
BOOL CFaceDetectDlg::OnInitDialog()
{
 CDialogEx::OnInitDialog();

 // Add "About..." menu item to system menu.

 // IDM_ABOUTBOX must be in the system command range.
 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
 ASSERT(IDM_ABOUTBOX < 0xF000);

 CMenu* pSysMenu = GetSystemMenu(FALSE);
 if (pSysMenu != NULL)
 {
 BOOL bNameValid;
 CString strAboutMenu;
 bNameValid = strAboutMenu.LoadString(IDS_ABOUTBOX);
 ASSERT(bNameValid);
 if (!strAboutMenu.IsEmpty())
 {
 pSysMenu->AppendMenu(MF_SEPARATOR);
 pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
 }
 }

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 string face_cascade_name = "..\\debug\\haarcascade_frontalface_alt.xml";
 string eyes_cascade_name = "..\\debug\\haarcascade_eye_tree_eyeglasses.xml";
 if( !face_cascade.load( face_cascade_name ) )
 {
 MessageBox(_T("haarcascade_frontalface_alt.xml Error loading")); 
 return -1;
 };

 if( !eyes_cascade.load( eyes_cascade_name ) )
 {
 MessageBox(_T(" haarcascade_eye_tree_eyeglasses.xmlError loading"));
 return -1;
 };

 return TRUE; // return TRUE unless you set the focus to a control
}

4 检测函数的编写

思路是这样的:

1.首先打开摄像头
2.然后将摄像托获取的图像传递给人脸识别的函数
3.将识别后处理过的图像在Picture控件中显示出来

双击IDD_FACEDETECT_DIALOG对话框上的上的“检测”按钮控件,进入控件函数编写的地方,该函数如下所示:

void CFaceDetectDlg::OnBnClickedStart()
{
 // TODO: Add your control notification handler code here
 capture.open(0);//捕获外部摄像头,如果只有一个摄像头,就填0
 Mat frame;
 namedWindow("view", WINDOW_AUTOSIZE);

 HWND hWnd = (HWND)cvGetWindowHandle("view");
 HWND hParent = ::GetParent(hWnd);

 ::SetParent(hWnd, GetDlgItem(IDC_PICTURE)->m_hWnd);
 ::ShowWindow(hParent, SW_HIDE);//隐藏运行程序框,并且把它“画”到MFC上

 if (capture.isOpened())
 {
 for (;;)//循环以达到视频的效果
 {
 capture >> frame;

 if (!frame.empty())
 {
 detectAndDisplay(frame);//识别的函数

 imshow("view", frame);
 UpdateData(FALSE);
 }
 else
 {
 //::AfxMessageBox(" --(!) No captured frame -- Break!");

 continue;
 //break;
 }

 waitKey(10);
 }

 }

}

以上代码中 detectAndDisplay(frame)语句表示调用了 detectAndDisplay(Mat frame)函数,因此我们得声明和定义该函数。

在CFaceDetectDlg类的头文件FaceDetectDlg.h中声明该函数:

void detectAndDisplay(Mat frame);//声明函数

在FaceDetectDlg.cpp中定义该函数:

void CFaceDetectDlg::detectAndDisplay( Mat frame )
{
 std::vector faces;
 Mat frame_gray;

 cvtColor( frame, frame_gray, CV_BGR2GRAY );
 equalizeHist( frame_gray, frame_gray );

 //-- 多尺寸检测人脸
 face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );

 for( int i = 0; i < faces.size(); i++ )
 {
 Point center( faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5 );
 ellipse( frame, center, Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 );

 Mat faceROI = frame_gray( faces[i] );
 std::vector eyes;

 //-- 在每张人脸上检测双眼
 eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CV_HAAR_SCALE_IMAGE, Size(30, 30) );

 for( int j = 0; j < eyes.size(); j++ )
 {
 Point center( faces[i].x + eyes[j].x + eyes[j].width*0.5, faces[i].y + eyes[j].y + eyes[j].height*0.5 );
 int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 );
 circle( frame, center, radius, Scalar( 255, 0, 0 ), 4, 8, 0 );
 }
 }

}

编译运行

编译工程,然后将
haarcascade_frontalface_alt.xml 和 haarcascade_eye_tree_eyeglasses.xml拷贝到工程目录文件下Debug文件夹里,也就是可执行文件所在的那个文件夹。

以上基本上可以实现预期的人脸识别功能,可是我们可以发现此时点击“退出”按钮时,摄像头的灯还亮着,那是因为摄像头在程序退出后没有关闭掉,因此还得添加代码关闭摄像头。

双击“退出”按钮,编辑代码如下

void CFaceDetectDlg::OnBnClickedOk()
{
 // TODO: Add your control notification handler code here
 capture.release(); //关闭摄像头
 CDialogEx::OnOK();
}

关于使用OpenCV 和MFC怎么实现一个人脸识别功能问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。


名称栏目:使用OpenCV和MFC怎么实现一个人脸识别功能
文章出自:http://kswjz.com/article/gdsdpp.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流