扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
基于连通图,邻接矩阵实现的图,非递归实现。
网站的建设成都创新互联公司专注网站定制,经验丰富,不做模板,主营网站定制开发.小程序定制开发,H5页面制作!给你焕然一新的设计体验!已为成都水泥搅拌车等企业提供专业服务。算法思想:
设置两个标志位,①该顶点是否入栈,②与该顶点相邻的顶点是否已经访问。
A 将始点标志位①置1,将其入栈
B 查看栈顶节点V在图中,有没有可以到达、且没有入栈、且没有从这个节点V出发访问过的节点
C 如果有,则将找到的这个节点入栈,这个顶点的标志位①置1,V的对应的此顶点的标志位②置1
D 如果没有,V出栈,并且将与v相邻的全部结点设为未访问,即全部的标志位②置0
E 当栈顶元素为终点时,设置终点没有被访问过,即①置0,打印栈中元素,弹出栈顶节点
F 重复执行B – E,直到栈中元素为空
先举一个例子吧
假设简单连通图如图1所示。假设我们要找出结点3到结点6的所有路径,那么,我们就设结点3为起点,结点6为终点。找到结点3到结点6的所有路径步骤如下:
1、 我们建立一个存储结点的栈结构,将起点3入栈,将结点3标记为入栈状态;
2、 从结点3出发,找到结点3的第一个非入栈没有访问过的邻结点1,将结点1标记为入栈状态,并且将3到1标记为已访问;
3、 从结点1出发,找到结点1的第一个非入栈没有访问过的邻结点0,将结点0标记为入栈状态,并且将1到0标记为已访问;
4、 从结点0出发,找到结点0的第一个非入栈没有访问过的邻结点2,将结点2标记为入栈状态,并且将0到2标记为已访问;
5、 从结点2出发,找到结点2的第一个非入栈没有访问过的邻结点5,将结点5标记为入栈状态,并且将2到5标记为已访问;
6、 从结点5出发,找到结点5的第一个非入栈没有访问过的邻结点6,将结点6标记为入栈状态,并且将5到6标记为已访问;
7、 栈顶结点6是终点,那么,我们就找到了一条起点到终点的路径,输出这条路径;
8、 从栈顶弹出结点6,将6标记为非入栈状态;
9、 现在栈顶结点为5,结点5没有非入栈并且非访问的结点,所以从栈顶将结点5弹出,并且将5到6标记为未访问;
10、 现在栈顶结点为2,结点2的相邻节点5已访问,6满足非入栈,非访问,那么我们将结点6入栈;
11、 现在栈顶为结点6,即找到了第二条路径,输出整个栈,即为第二条路径
12、 重复步骤8-11,就可以找到从起点3到终点6的所有路径;
13、 栈为空,算法结束。
下面讲一下C++代码实现
图类,基于邻接矩阵,不详细的写了 ==
class Graph { private: CArrayVertices; int Edge[MaxVertices][MaxVertices]; int numOfEdges; public: Graph(); ~Graph(); void InsertVertex(DataType Vertex); void InsertEdge(int v1,int v2,int weight); int GetWeight(int i,int j); int GetVertices(); DataType GetValue(int i); };
另外有需要云服务器可以了解下创新互联建站www.cdcxhl.com,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流