扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
联合分布律表格的求法为:设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:F(x,y)=P{(X=x)交(Y=y)}=P(X=x,Y=y)。称为:二维随机变量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。
创新互联致力于互联网品牌建设与网络营销,包括网站设计、网站制作、SEO优化、网络推广、整站优化营销策划推广、电子商务、移动互联网营销等。创新互联为不同类型的客户提供良好的互联网应用定制及解决方案,创新互联核心团队10年专注互联网开发,积累了丰富的网站经验,为广大企业客户提供一站式企业网站建设服务,在网站建设行业内树立了良好口碑。
联合概率分布的几何意义:如果将二维随机变量(X,Y)看成是平面上随机点的坐标,那么分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在以点(x,y)为顶点而位于该点左下方的无穷矩形域内的概率。
在概率论中,对两个随机变量X和Y,其联合分布是同时对于X和Y的概率分布。
R编程语言已经成为统计分析中的事实标准。但在这篇文章中,我将告诉你在Python中实现统计学概念会是如此容易。我要使用Python实现一些离散和连续的概率分布。虽然我不会讨论这些分布的数学细节,但我会以链接的方式给你一些学习这些统计学概念的好资料。在讨论这些概率分布之前,我想简单说说什么是随机变量(random variable)。随机变量是对一次试验结果的量化。
举个例子,一个表示抛硬币结果的随机变量可以表示成
Python
1
2
X = {1 如果正面朝上,
2 如果反面朝上}
随机变量是一个变量,它取值于一组可能的值(离散或连续的),并服从某种随机性。随机变量的每个可能取值的都与一个概率相关联。随机变量的所有可能取值和与之相关联的概率就被称为概率分布(probability distributrion)。
我鼓励大家仔细研究一下scipy.stats模块。
概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布。
离散概率分布也称为概率质量函数(probability mass function)。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等。
连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如一条实线上的值)的函数。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布。
若想了解更多关于离散和连续随机变量的知识,你可以观看可汗学院关于概率分布的视频。
二项分布(Binomial Distribution)
服从二项分布的随机变量X表示在n个独立的是/非试验中成功的次数,其中每次试验的成功概率为p。
E(X) = np, Var(X) = np(1−p)
如果你想知道每个函数的原理,你可以在IPython笔记本中使用help file命令。 E(X)表示分布的期望或平均值。
键入stats.binom?了解二项分布函数binom的更多信息。
二项分布的例子:抛掷10次硬币,恰好两次正面朝上的概率是多少?
假设在该试验中正面朝上的概率为0.3,这意味着平均来说,我们可以期待有3次是硬币正面朝上的。我定义掷硬币的所有可能结果为k = np.arange(0,11):你可能观测到0次正面朝上、1次正面朝上,一直到10次正面朝上。我使用stats.binom.pmf计算每次观测的概率质量函数。它返回一个含有11个元素的列表(list),这些元素表示与每个观测相关联的概率值。
您可以使用.rvs函数模拟一个二项随机变量,其中参数size指定你要进行模拟的次数。我让Python返回10000个参数为n和p的二项式随机变量。我将输出这些随机变量的平均值和标准差,然后画出所有的随机变量的直方图。
泊松分布(Poisson Distribution)
一个服从泊松分布的随机变量X,表示在具有比率参数(rate parameter)λ的一段固定时间间隔内,事件发生的次数。参数λ告诉你该事件发生的比率。随机变量X的平均值和方差都是λ。
E(X) = λ, Var(X) = λ
泊松分布的例子:已知某路口发生事故的比率是每天2次,那么在此处一天内发生4次事故的概率是多少?
让我们考虑这个平均每天发生2起事故的例子。泊松分布的实现和二项分布有些类似,在泊松分布中我们需要指定比率参数。泊松分布的输出是一个数列,包含了发生0次、1次、2次,直到10次事故的概率。我用结果生成了以下图片。
你可以看到,事故次数的峰值在均值附近。平均来说,你可以预计事件发生的次数为λ。尝试不同的λ和n的值,然后看看分布的形状是怎么变化的。
现在我来模拟1000个服从泊松分布的随机变量。
正态分布(Normal Distribution)
正态分布是一种连续分布,其函数可以在实线上的任何地方取值。正态分布由两个参数描述:分布的平均值μ和方差σ2 。
E(X) = μ, Var(X) = σ2
正态分布的取值可以从负无穷到正无穷。你可以注意到,我用stats.norm.pdf得到正态分布的概率密度函数。
β分布(Beta Distribution)
β分布是一个取值在 [0, 1] 之间的连续分布,它由两个形态参数α和β的取值所刻画。
β分布的形状取决于α和β的值。贝叶斯分析中大量使用了β分布。
当你将参数α和β都设置为1时,该分布又被称为均匀分布(uniform distribution)。尝试不同的α和β取值,看看分布的形状是如何变化的。
指数分布(Exponential Distribution)
指数分布是一种连续概率分布,用于表示独立随机事件发生的时间间隔。比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔、中文维基百科新条目出现的时间间隔等等。
我将参数λ设置为0.5,并将x的取值范围设置为 $[0, 15]$ 。
接着,我在指数分布下模拟1000个随机变量。scale参数表示λ的倒数。函数np.std中,参数ddof等于标准偏差除以 $n-1$ 的值。
结语(Conclusion)
概率分布就像盖房子的蓝图,而随机变量是对试验事件的总结。我建议你去看看哈佛大学数据科学课程的讲座,Joe Blitzstein教授给了一份摘要,包含了你所需要了解的关于统计模型和分布的全部。
联合分布函数:若存在二元实数函数f(x,y)满足:1、f(x,y)非负 2、在负无穷到正无穷对f(x,y)进行二重积分值为1是的随机向量(X,Y)的分布函数F(X,Y)是从负无穷到x和负无穷到y对f(x,y)的二重积分,则称(X,Y)为连续型的随机向量,其中f(x,y)为概率密度函数,F(X,Y)为分布函数,也就是联合分布函数。
边缘分布函数:如果二维随机变量X,Y的分布函数F{x,y}为已知,那么随机变量x,y的分布函数Fx{x}和Fy{y}分别可由F{x,y}求得。则Fx{x}和Fy{y}为分布函数F{x,y}的边缘分布函数。
望采纳,谢谢!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流