中国nosql,中国nosql市场-成都快上网建站

中国nosql,中国nosql市场

国内有哪些大数据公司

“大数据”这一概念最早在国外被提及。之后国内外兴起了一系列大数据技术,包括大数据硬件类、大数据分析类、大数据数据处理类等等,也因此诞生了一批大数据厂商。

科尔沁左翼ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:13518219792(备注:SSL证书合作)期待与您的合作!

分析解决方案类厂商除去IBM、SAP、Oracle、微软、惠普国外代表厂商,在国内有星环科技、帆软、用友、等等。

星环信息科技主要从事大数据时代核心平台数据库软件的研发与服务,被Gartner列为国际主流Hadoop发行版厂商。其产品Transwarp Data Hub提供高速SQL引擎Transwarp Inceptor, NoSQL搜索引擎Transwarp Hyperbase、流处理引擎Transwarp Stream和数据挖掘组件Transwarp Discover。

帆软公司由报表软件FineReport起家,目前已成为报表领域的权威者,拥有10年企业数据分析的行业经验。后发布的商业智能自助式BI工具FineBI,提供包括Hadoop、分布式数据库、多维数据库的大数据可视化分析;提供PC端、移动端、大屏的可视化方案,广泛应用于银行、电商、地产、医药、制造、电信、制造、化工等行业,拥有成熟的行业化解决方案。

数据可视化类厂商有海云数据、星途数据、帆软、数字冰雹等。

用户行为/精准营销分析类,大数据技术使得用户在互联网的行为,得到精准定位,从而细化营销方案、快速迭代产品。这方面的厂商有GrowingIO、神策数据等。

淘宝的总部数据库是放在中国境内还是在美国他的数据库会被删除吗

中国,不会。

1、中国阿里云数据库HBase是面向大数据领域的一站式NoSQL服务。

2、适用于GB至PB级的大规模吞吐、检索、分析工作负载,是为淘宝推荐、支付宝账单、花呗风控、监控、广告投放、物流轨迹以及其他数据存放使用的,是不会被删除的。

NoSQL如何实现数据的增删改查?

package basic;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

public class JDBC {

public void findAll() {

try {

// 获得数据库驱动

//由于长时间不写,驱动名和URL都忘记了,不知道对不对,你应该知道的,自己改一下的哈

String url = "jdbc:oracle:thin:@localhost:1521:XE";

String userName = "system";

String password = "system";

Class.forName("oracle.jdbc.driver.OracleDriver");

// 创建连接

Connection conn = DriverManager.getConnection(url, userName,

password);

// 新建发送sql语句的对象

Statement st = conn.createStatement();

// 执行sql

String sql = "select * from users";

ResultSet rs = st.executeQuery(sql);

// 处理结果

while(rs.next()){

//这个地方就是给你的封装类属性赋值

System.out.println("UserName:"+rs.getString(0));

}

// 关闭连接

rs.close();

st.close();

conn.close();

} catch (ClassNotFoundException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (SQLException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

public void delete(){

try {

//步骤还是那六个步骤,前边的两步是一样的

String url = "jdbc:oracle:thin:@localhost:1521:XE";

String userName = "system";

String password = "system";

Class.forName("oracle.jdbc.driver.OracleDriver");

Connection conn = DriverManager.getConnection(url,userName,password);

//这里的发送sql语句的对象是PreparedStatement,成为预处理sql对象,因为按条件删除是需要不定值的

String sql = "delete from users where id = ?";

PreparedStatement ps = conn.prepareStatement(sql);

ps.setInt(0, 1);

int row = ps.executeUpdate();

if(row!=0){

System.out.println("删除成功!");

}

// 关闭连接

rs.close();

st.close();

conn.close();

} catch (ClassNotFoundException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (SQLException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

}

国内五大论文数据库?

国内五大论文数据库如下:

一、中国知网提供的《中国学术期刊(光盘版)》

也称中国期刊全文数据库由清华同方股份有限公司出版。

收录1994年以来国内6 600种期刊,包括了学术期刊于非学术期刊,涵盖理工、农业、医药卫生、文史哲、政治军事与法律、教育与社会科学综合、电子技术与信息科学、经济与管理。

收录的学术期刊同时作为“中国学术期刊综合评价数据库统计源期刊”。

但是收录的期刊不很全面,一些重要期刊未能收录。

二、中国生物医学文献数据库(CBMDISC)

数据库是中国医学科学院信息研究所开发研制,收录了自1978年以来1 600余种中国生物医学期刊。

范围涉及基础医学、临床医学、预防医学、药学、中医学及中药学等生物医学的各个领域。

三、中文生物医学期刊数据库(CMCC)

由中国人民解放军医学图书馆数据库研究部研制开发。

收录了1994年以来国内正式出版发行的生物医学期刊和一些自办发行的生物医学刊物1 000余种的文献题录和文摘。

涉及的主要学科领域有:基础医学、临床医学、预防医学、药学、医学生物学、中医学、中药学、医院管理及医学信息等生物医学的各个领域。

并具有成果查新功能医学全在线

四、万方数据资源系统(China Info)

由中国科技信息研究所,万方数据股份有限公司研制。

该数据库收录的期刊学科范围广,包括了学术期刊于非学术期刊,提供约2 000种的电子期刊的全文检索。

被收录的学术期刊都获得了“中国核心期刊(遴选)数据库来源期刊”的收录证书。

个别期刊甚至将“遴选”改成“精选”,或者干脆去掉。

很多作者因此误以为这就是核心期刊。

五、维普数据库

也称中文科技期刊数据库,维普科技期刊数据库,由中国科学技术信息研究所重庆分所出版。

收录了1989年以来我国自然科学、工程技术、农业科学、医药卫生、经济管理、教育科学和图书情报等学科9 000余种期刊,包括了学术与非学术期刊。

收录期刊数量很大,但不足之处是部分国家新闻出版总署公布的非法期刊也被收录了。

一般的,学术期刊都能进入至少1个国内期刊数据库。

期刊据数据库不是期刊的评价体系,对科研处的期刊性质评价也就缺乏足够的意义,故不宜作为期刊性质评价的依据。

另外还有:

1、万方数据

万方数据提供中国大陆科技期刊检索,是万方数据股份有限公司建立的专业学术知识服务网站。

隶属于万方数据资源系统,对外服务数据由万方数据资源系统统一部署提供。

2、全国报刊索引

收录全国包括港台地区的期刊8000种左右,月报道量在1.8万条以上,年报道量在44万条左右,书本式用户有3500多家,现又出版光盘数据库。

反映了中国政治、经济、军事、科学、文化、文学艺术、历史地理、科技等方面的发展情况,提供了国内外最新学术进展信息。

该索引是我国收录报刊种类最多,内容涉及范围最广,持续出版时间最长,与新文献保持同步发展的权威性检索刊物,也是查找建国以来报刊论文资料最重要的检索工具。

正文采用分类编排,先后采用过《中国人民大学图书分类法》和自编的《报刊资料分类表》,1980年起,仿《中国图书馆图书分类法》分21类编排,1992年全面改用《中国图书资料分类法》(第三版)编排,2000年开始用《中国图书馆分类法》(第四版)标引,计算机编排。

在著录上,《全国报刊索引》从1991年起采用国家标准——《检索期刊条目著录规则》进行著录,包括题名、著译者姓名、报刊名、版本、卷期标识、起止页码、附注等项。

同时,“哲社版”采用电脑编排,增加了“著者索引”、“题中人名分析索引”、“引用报刊一览表”,方便了读者的使用。

3、超星数字图书馆

为目前世界最大的中文在线数字图书馆,提供大量的电子图书资源提供阅读,其中包括文学、经济、计算机等五十余大类,数十万册电子图书,300万篇论文,全文总量4亿余页,数据总量30000GB,大量免费电子图书,并且每天仍在不断的增加与更新。

覆盖范围:涉及哲学、宗教、社科总论、经典理论、民族学、经济学、自然科学总论、计算机等各个学科门类。

本馆已订购67万余册。

收录年限:1977年至今。

4、维普资讯

维普资讯是科学技术部西南信息中心下属的一家大型的专业化数据公司,是中文期刊数据库建设事业的奠基人,公司全称重庆维普资讯有限公司。

目前已经成为中国最大的综合文献数据库。

从1989年开始,一直致力于对海量的报刊数据进行科学严谨的研究、分析,采集、加工等深层次开发和推广应用。

5、中宏数据库

中宏数据库由国家发改委所属的中国宏观经济学会、中宏基金、中国宏观经济信息网、中宏经济研究中心联合研创。

是由18类大库、74类中库组成,涵盖了九十年代以来宏观经济、区域经济、产业经济、金融保险、投资消费、世界经济、政策法规、统计数字、研究报告等方面的详尽内容,是目前国内门类最全,分类最细,容量最大的经济类数据库。

发展现状

在数据库的发展历史上,数据库先后经历了层次数据库、网状数据库和关系数据库等各个阶段的发展,数据库技术在各个方面的快速的发展。特别是关系型数据库已经成为目前数据库产品中最重要的一员,80年代以来,几乎所有的数据库厂商新出的数据库产品都支持关系型数据库,

即使一些非关系数据库产品也几乎都有支持关系数据库的接口。这主要是传统的关系型数据库可以比较好的解决管理和存储关系型数据的问题。随着云计算的发展和大数据时代的到来,关系型数据库越来越无法满足需要,

这主要是由于越来越多的半关系型和非关系型数据需要用数据库进行存储管理,以此同时,分布式技术等新技术的出现也对数据库的技术提出了新的要求,于是越来越多的非关系型数据库就开始出现,这类数据库与传统的关系型数据库在设计和数据结构有了很大的不同,

它们更强调数据库数据的高并发读写和存储大数据,这类数据库一般被称为NoSQL(Not only SQL)数据库。而传统的关系型数据库在一些传统领域依然保持了强大的生命力。

以上内容参考:百度百科——数据库

国内哪些互联网公司使用了 Cassandra 数据库?

国内生产环境使用Cassandra比较多的大公司有360,从公开的资料看,应该有至少1500台服务器的集群。360选用cassandra的原因如下:团队人员少,需求紧,选择开源项目;无单点,无中心,适合在线业务;代码易懂,团队成员有代码基础;社区比较活跃。

另外一些中小型公司和创业公司也有在使用。

这里要解释几个对cassandra的误解:

1、Facebook弃用?Facebook当初想用cassandra实现其消息系统,但后来发现不合适,原因不是cassandra不靠谱,而是Cassandra的最终一致性模型不适合Message System,HBase具有更简单的一致性模型。Cassandra强调AP ,Hbase强调CP。目前Facebook的inbox search系统在使用,8亿用户,200T数据;其移动应用开发平台也使用cassandra。

2、Twitter弃用?本质是mysql和nosql之争。cassandra能进入twitter的视野,恰恰说明cassandra是nosql的代表性产品之一。为什么twitter在tweets系统中不使用cassandra?"这是一次战略上的变化。我们将继续维护我们原本基于Mysql的存储。我们相信,现在还没有到大规模迁移数据到一个新技术的时候。”目前twitter也有使用cassandra——Using Cassandra in production for geolocation and analytics。

3、Cassandra不火?国内对mongodb和hbase推崇备至,究其原因是因为mongodb这个公司进入了中国市场并建立了中文组,而hbase在阿里的大范围使用和推广下培养了一大批用户和公开材料。Cassandra最近两年在大数据公司Datastax的大力培育下获得长足发展,功能和性能均大幅提升,Datastax的估值也达数亿美元。从apache cassandra首页来看,大概有超过1500个公司在使用cassandra。其中除了facebook和twitter外还一些有代表性的公司列举如下:

Instagram:inbox、newsfeed、 audit、fraud detection,12 EC2 node,1.2T,2w+ wps,1.5w+ rps;

eBay:200+TB,400+M写,100+M读,应用场景:商品详情页上的Social Signals,如Like,Want,Own,Favorites等;用户和商品的hunch taste graph;时间序列如移动通知,反作弊,soa,监控,日志服务等;

Netflix:包含288+96+60个实例的大规模集群,每秒110万的写操作,3个AWS EC2 美国东部region的zone自动复制副本,总计330万写操作/秒;

Apple:75000+ nodes, 10s  of PBs,Millions ops/s, largest cluster 1000+ nodes。

从技术实现上来讲,cassandra同时具备AWS Dynamo和Google Bigtable的设计理念,同时引入了P2P技术,具备大规模可分区行存储能力,强调AP,实现了最终一致性,具备多数据中心复制支持,具备市场上最具有竞争力的可扩展性,无中心节点,一致性和时延可调,无单点故障,每个节点只有一个进程等等大数据存储管理的先进特点,并支持spark、storm、hadoop的集成。但同时,Cassandra实现复杂性高,没有相应的中文社区,文档太少,国内应用和实践太少,Datastax也未进入中国市场,因此在中国的推广会比较困难。

互联网如何海量存储数据?

目前存储海量数据的技术主要包括NoSQL、分布式文件系统、和传统关系型数据库。随着互联网行业不断的发展,产生的数据量越来越多,并且这些数据的特点是半结构化和非结构化,数据很可能是不精确的,易变的。这样传统关系型数据库就无法发挥它的优势。因此,目前互联网行业偏向于使用NoSQL和分布式文件系统来存储海量数据。

下面介绍下常用的NoSQL和分布式文件系统。

NoSQL

互联网行业常用的NoSQL有:HBase、MongoDB、Couchbase、LevelDB。

HBase是Apache Hadoop的子项目,理论依据为Google论文 Bigtable: A Distributed Storage System for Structured Data开发的。HBase适合存储半结构化或非结构化的数据。HBase的数据模型是稀疏的、分布式的、持久稳固的多维map。HBase也有行和列的概念,这是与RDBMS相同的地方,但却又不同。HBase底层采用HDFS作为文件系统,具有高可靠性、高性能。

MongoDB是一种支持高性能数据存储的开源文档型数据库。支持嵌入式数据模型以减少对数据库系统的I/O、利用索引实现快速查询,并且嵌入式文档和集合也支持索引,它复制能力被称作复制集(replica set),提供了自动的故障迁移和数据冗余。MongoDB的分片策略将数据分布在服务器集群上。

Couchbase这种NoSQL有三个重要的组件:Couchbase服务器、Couchbase Gateway、Couchbase Lite。Couchbase服务器,支持横向扩展,面向文档的数据库,支持键值操作,类似于SQL查询和内置的全文搜索;Couchbase Gateway提供了用于RESTful和流式访问数据的应用层API。Couchbase Lite是一款面向移动设备和“边缘”系统的嵌入式数据库。Couchbase支持千万级海量数据存储

分布式文件系统

如果针对单个大文件,譬如超过100MB的文件,使用NoSQL存储就不适当了。使用分布式文件系统的优势在于,分布式文件系统隔离底层数据存储和分布的细节,展示给用户的是一个统一的逻辑视图。常用的分布式文件系统有Google File System、HDFS、MooseFS、Ceph、GlusterFS、Lustre等。

相比过去打电话、发短信、用彩铃的“老三样”,移动互联网的发展使得人们可以随时随地通过刷微博、看视频、微信聊天、浏览网页、地图导航、网上购物、外卖订餐等,这些业务的海量数据都构建在大规模网络云资源池之上。当14亿中国人把衣食住行搬上移动互联网的同时,也给网络云资源池带来巨大业务挑战。

首先,用户需求动态变化,传统业务流量主要是端到端模式,较为稳定;而互联网流量易受热点内容牵引,数据流量流向复杂和规模多变:比如双十一购物狂潮,电商平台订单创建峰值达到58.3万笔,要求通信网络提供高并发支持;又如优酷春节期间有超过23亿人次上网刷剧、抖音拜年短视频增长超10倍,需要通信网络能够灵活扩充带宽。面对用户动态多变的需求,通信网络需要具备快速洞察和响应用户需求的能力,提供高效、弹性、智能的数据服务。

“随着通信网络管道十倍百倍加粗、节点数从千万级逐渐跃升至百亿千亿级,如何‘接得住、存得下’海量数据,成为网络云资源池建设面临的巨大考验”,李辉表示。一直以来,作为新数据存储首倡者和引领者,浪潮存储携手通信行业用户,不断 探索 提速通信网络云基础设施的各种姿势。

早在2018年,浪潮存储就参与了通信行业基础设施建设,四年内累计交付约5000套存储产品,涵盖全闪存储、高端存储、分布式存储等明星产品。其中在网络云建设中,浪潮存储已连续两年两次中标全球最大的NFV网络云项目,其中在网络云二期建设中,浪潮存储提供数千节点,为上层网元、应用提供高效数据服务。在最新的NFV三期项目中,浪潮存储也已中标。

能够与通信用户在网络云建设中多次握手,背后是浪潮存储的持续技术投入与创新。浪潮存储6年内投入超30亿研发经费,开发了业界首个“多合一”极简架构的浪潮并行融合存储系统。此存储系统能够统筹管理数千个节点,实现性能、容量线性扩展;同时基于浪潮iTurbo智能加速引擎的智能IO均衡、智能资源调度、智能元数据管理等功能,与自研NVMe SSD闪存盘进行系统级别联调优化,让百万级IO均衡落盘且路径更短,将存储系统性能发挥到极致。

“为了确保全球最大规模的网络云正常上线运行,我们联合用户对存储集群展开了长达数月的魔鬼测试”,浪潮存储工程师表示。网络云的IO以虚拟机数据和上层应用数据为主,浪潮按照每个存储集群支持15000台虚机进行配置,分别对单卷随机读写、顺序写、混合读写以及全系统随机读写的IO、带宽、时延等指标进行了360无死角测试,达到了通信用户提出的单卷、系统性能不低于4万和12万IOPS、时延小于3ms的要求,产品成熟度得到了验证。

以通信行业为例,2020年全国移动互联网接入流量1656亿GB,相当于中国14亿人每人消耗118GB数据;其中春节期间,移动互联网更是创下7天消耗36亿GB数据流量的记录,还“捎带”打了548亿分钟电话、发送212亿条短信……海量实时数据洪流,在网络云资源池(NFV)支撑下收放自如,其中分布式存储平台发挥了作用。如此样板工程,其巨大示范及拉动作用不言而喻。


分享名称:中国nosql,中国nosql市场
URL链接:http://kswjz.com/article/dsgoisg.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流