扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。
网站建设哪家好,找成都创新互联公司!专注于网页设计、网站建设、微信开发、微信小程序、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了埇桥区免费建站欢迎大家使用!
常见的Nosql数据库有:
一、Redis数据库
Redis(RemoteDictionaryServer),即远程字典服务,是一个开源的使用ANSIC语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。从2010年3月15日起,Redis的开发工作由VMware主持。从2013年5月开始,Redis的开发由Pivotal赞助。
二、MongoDB数据库
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。
Mongo最大的特点是它支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。
扩展资料:
对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:
一、易扩展
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。无形之间,在架构的层面上带来了可扩展的能力。
二、大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query Cache。NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说性能就要高很多。
三、灵活的数据模型
NoSQL无须事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是——个噩梦。这点在大数据量的Web2.0时代尤其明显。
四、高可用
NoSQL在不太影响性能的情况,就可以方便地实现高可用的架构。比如Cassandra、HBase模型,通过复制模型也能实现高可用。
参考资料来源:百度百科-NoSQL
什么是NoSQL数据库?从名称“非SQL”或“非关系型”衍生而来,这些数据库不使用类似SQL的查询语言,通常称为结构化存储。这些数据库自1960年就已经存在,但是直到现在一些大公司(例如Google和Facebook)开始使用它们时,这些数据库才流行起来。该数据库最明显的优势是摆脱了一组固定的列、连接和类似SQL的查询语言的限制。有时,NoSQL这个名称也可能表示“不仅仅SQL”,来确保它们可能支持SQL。 NoSQL数据库使用诸如键值、宽列、图形或文档之类的数据结构,并且可以如JSON之类的不同格式存储。
文档数据库
源起:受Lotus Notes启发。
数据模型:包含了key-value的文档集合
例子:CouchDB, MongoDB
优点:数据模型自然,编程友好,快速开发,web友好,CRUD。
图数据库
源起: 欧拉和图理论。
数据模型:节点和关系,也可处理键值对。
例子:AllegroGraph, InfoGrid, Neo4j
优点:解决复杂的图问题。
关系数据库
源起: E. F. Codd 在A Relational Model of Data for Large Shared Data Banks提出的
数据模型:各种关系
例子:VoltDB, Clustrix, MySQL
优点:高性能、可扩展的OLTP,支持SQL,物化视图,支持事务,编程友好。
对象数据库
源起:图数据库研究
数据模型:对象
例子:Objectivity, Gemstone
优点:复杂对象模型,快速键值访问,键功能访问,以及图数据库的优点。
Key-Value数据库
源起:Amazon的论文 Dynamo 和 Distributed HashTables。
数据模型:键值对
例子:Membase, Riak
优点:处理大量数据,快速处理大量读写请求。编程友好。
BigTable类型数据库
源起:Google的论文 BigTable。
数据模型:列簇,每一行在理论上都是不同的
例子:HBase, Hypertable, Cassandra
优点:处理大量数据,应对极高写负载,高可用,支持跨数据中心, MapReduce。
数据结构服务
源起: ?
数据模型:字典操作,lists, sets和字符串值
例子:Redis
优点:不同于以前的任何数据库
网格数据库
源起:数据网格和元组空间研究。
数据模型:基于空间的架构
例子:GigaSpaces, Coherence
优点:适于事务处理的高性能和高扩展性
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流