python请求处理函数 python 函数 方法-成都快上网建站

python请求处理函数 python 函数 方法

Python网络请求和解析json数据

Python 的 json 模块提供了两个函数 json.dumps() 和 json.loads() 来编码和解码JSON数据。

创新互联公司主打移动网站、成都网站设计、成都做网站、外贸网站建设、网站改版、网络推广、网站维护、申请域名、等互联网信息服务,为各行业提供服务。在技术实力的保障下,我们为客户承诺稳定,放心的服务,根据网站的内容与功能再决定采用什么样的设计。最后,要实现符合网站需求的内容、功能与设计,我们还会规划稳定安全的技术方案做保障。

如果要处理的是文件而不是字符串,可以使用 json.dump() 和 json.load() 来编码和解码JSON数据。例如:

Python常用的正则表达式处理函数详解

正则表达式是一个特殊的字符序列,用于简洁表达一组字符串特征,检查一个字符串是否与某种模式匹配,使用起来十分方便。

在Python中,我们通过调用re库来使用re模块:

import re

下面介绍Python常用的正则表达式处理函数。

re.match函数

re.match 函数从字符串的起始位置匹配正则表达式,返回match对象,如果不是起始位置匹配成功的话,match()就返回None。

re.match(pattern, string, flags=0)

pattern:匹配的正则表达式。

string:待匹配的字符串。

flags:标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。具体参数为:

re.I:忽略大小写。

re.L:表示特殊字符集 \w, \W, \b, \B, \s, \S 依赖于当前环境。

re.M:多行模式。

re.S:即 . ,并且包括换行符在内的任意字符(. 不包括换行符)。

re.U:表示特殊字符集 \w, \W, \b, \B, \d, \D, \s, \S 依赖于 Unicode 字符属性数据库。

re.X:为了增加可读性,忽略空格和 # 后面的注释。

import re #从起始位置匹配 r1=re.match('abc','abcdefghi') print(r1) #不从起始位置匹配 r2=re.match('def','abcdefghi') print(r2)

运行结果:

其中,span表示匹配成功的整个子串的索引。

使用group(num) 或 groups() 匹配对象函数来获取匹配表达式。

group(num):匹配的整个表达式的字符串,group() 可以一次输入多个组号,这时它将返回一个包含那些组所对应值的元组。

groups():返回一个包含所有小组字符串的元组,从 1 到 所含的小组号。

import re s='This is a demo' r1=re.match(r'(.*) is (.*)',s) r2=re.match(r'(.*) is (.*?)',s) print(r1.group()) print(r1.group(1)) print(r1.group(2)) print(r1.groups()) print() print(r2.group()) print(r2.group(1)) print(r2.group(2)) print(r2.groups())

运行结果:

上述代码中的(.*)和(.*?)表示正则表达式的贪婪匹配与非贪婪匹配。

re.search函数

re.search函数扫描整个字符串并返回第一个成功的匹配,如果匹配成功则返回match对象,否则返回None。

re.search(pattern, string, flags=0)

pattern:匹配的正则表达式。

string:待匹配的字符串。

flags:标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。

import re #从起始位置匹配 r1=re.search('abc','abcdefghi') print(r1) #不从起始位置匹配 r2=re.search('def','abcdefghi') print(r2)

运行结果:

使用group(num) 或 groups() 匹配对象函数来获取匹配表达式。

group(num=0):匹配的整个表达式的字符串,group() 可以一次输入多个组号,这时它将返回一个包含那些组所对应值的元组。

groups():返回一个包含所有小组字符串的元组,从 1 到 所含的小组号。

import re s='This is a demo' r1=re.search(r'(.*) is (.*)',s) r2=re.search(r'(.*) is (.*?)',s) print(r1.group()) print(r1.group(1)) print(r1.group(2)) print(r1.groups()) print() print(r2.group()) print(r2.group(1)) print(r2.group(2)) print(r2.groups())

运行结果:

从上面不难发现re.match与re.search的区别:re.match只匹配字符串的起始位置,只要起始位置不符合正则表达式就匹配失败,而re.search是匹配整个字符串,直到找到一个匹配为止。

re.compile 函数

compile 函数用于编译正则表达式,生成一个正则表达式对象,供 match() 和 search() 这两个函数使用。

re.compile(pattern[, flags])

pattern:一个字符串形式的正则表达式。

flags:可选,表示匹配模式,比如忽略大小写,多行模式等。

import re #匹配数字 r=re.compile(r'\d+')  r1=r.match('This is a demo') r2=r.match('This is 111 and That is 222',0,27) r3=r.match('This is 111 and That is 222',8,27)   print(r1) print(r2) print(r3)

运行结果:

findall函数

搜索字符串,以列表形式返回正则表达式匹配的所有子串,如果没有找到匹配的,则返回空列表。

需要注意的是,match 和 search 是匹配一次,而findall 匹配所有。

findall(string[, pos[, endpos]])

string:待匹配的字符串。

pos:可选参数,指定字符串的起始位置,默认为0。

endpos:可选参数,指定字符串的结束位置,默认为字符串的长度。

import re #匹配数字 r=re.compile(r'\d+')  r1=r.findall('This is a demo') r2=r.findall('This is 111 and That is 222',0,11) r3=r.findall('This is 111 and That is 222',0,27)   print(r1) print(r2) print(r3)

运行结果:

re.finditer函数

和 findall 类似,在字符串中找到正则表达式所匹配的所有子串,并把它们作为一个迭代器返回。

re.finditer(pattern, string, flags=0)

pattern:匹配的正则表达式。

string:待匹配的字符串。

flags:标志位,用于控制正则表达式的匹配方式,如是否区分大小写,多行匹配等。

import re  r=re.finditer(r'\d+','This is 111 and That is 222') for i in r:   print (i.group())

运行结果:

re.split函数

将一个字符串按照正则表达式匹配的子串进行分割后,以列表形式返回。

re.split(pattern, string[, maxsplit=0, flags=0])

pattern:匹配的正则表达式。

string:待匹配的字符串。

maxsplit:分割次数,maxsplit=1分割一次,默认为0,不限次数。

flags:标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等。

import re  r1=re.split('\W+','This is 111 and That is 222')  r2=re.split('\W+','This is 111 and That is 222',maxsplit=1)  r3=re.split('\d+','This is 111 and That is 222')  r4=re.split('\d+','This is 111 and That is 222',maxsplit=1)  print(r1) print(r2) print(r3) print(r4)

运行结果:

re.sub函数

re.sub函数用于替换字符串中的匹配项。

re.sub(pattern, repl, string, count=0, flags=0)

pattern:正则中的模式字符串。

repl:替换的字符串,也可为一个函数。

string:要被查找替换的原始字符串。

count:模式匹配后替换的最大次数,默认0表示替换所有的匹配。

import re  r='This is 111 and That is 222' # 删除字符串中的数字 r1=re.sub(r'\d+','',r) print(r1) # 删除非数字的字符串  r2=re.sub(r'\D','',r) print(r2)

运行结果:

到此这篇关于Python常用的正则表达式处理函数详解的文章就介绍到这了,希望大家以后多多支持!

python常用函数包有哪些?

一些python常用函数包:

1、Urllib3

Urllib3是一个 Python 的 HTTP 客户端,它拥有 Python 标准库中缺少的许多功能:

线程安全

连接池

客户端 SSL/TLS 验证

使用分段编码上传文件

用来重试请求和处理 HTTP 重定向的助手

支持 gzip 和 deflate 编码

HTTP 和 SOCKS 的代理支持

2、Six

six 是一个是 Python 2 和 3 的兼容性库。这个项目旨在支持可同时运行在 Python 2 和 3 上的代码库。它提供了许多可简化 Python 2 和 3 之间语法差异的函数。

3、botocore、boto3、s3transfer、awscli

Botocore是 AWS 的底层接口。Botocore是 Boto3 库(#22)的基础,后者让你可以使用 Amazon S3 和 Amazon EC2 一类的服务。Botocore 还是 AWS-CLI 的基础,后者为 AWS 提供统一的命令行界面。

S3transfer(#7)是用于管理 Amazon S3 传输的 Python 库。它正在积极开发中,其介绍页面不推荐人们现在使用,或者至少等版本固定下来再用,因为其 API 可能发生变化,在次要版本之间都可能更改。Boto3、AWS-CLI和其他许多项目都依赖s3transfer。

4、Pip

pip是“Pip Installs Packages”的首字母递归缩写。

pip很容易使用。要安装一个包只需pip install package name即可,而删除包只需pip uninstall package name即可。

最大优点之一是它可以获取包列表,通常以requirements.txt文件的形式获取。该文件能选择包含所需版本的详细规范。大多数 Python 项目都包含这样的文件。

如果结合使用pip与virtualenv(列表中的 #57),就可以创建可预测的隔离环境,同时不会干扰底层系统,反之亦然。

5、Python-dateutil

python-dateutil模块提供了对标准datetime模块的强大扩展。我的经验是,常规的Python datetime缺少哪些功能,python-dateutil就能补足那一块。

6、Requests

Requests建立在我们的 #1 库——urllib3基础上。它让 Web 请求变得非常简单。相比urllib3来说,很多人更喜欢这个包。而且使用它的最终用户可能也比urllib3更多。后者更偏底层,并且考虑到它对内部的控制级别,它一般是作为其他项目的依赖项。

7、Certifi

近年来,几乎所有网站都转向 SSL,你可以通过地址栏中的小锁符号来识别它。加了小锁意味着与该站点的通信是安全和加密的,能防止窃听行为。

8、Idna

根据其 PyPI 页面,idna提供了“对 RFC5891 中指定的应用程序中国际化域名(IDNA)协议的支持。”

IDNA的核心是两个函数:ToASCII和ToUnicode。ToASCII会将国际 Unicode 域转换为 ASCII 字符串。ToUnicode则逆转该过程。在IDNA包中,这些函数称为idna.encode()和idna.decode()

9、PyYAML

YAML是一种数据序列化格式。它的设计宗旨是让人类和计算机都能很容易地阅读代码——人类很容易读写它的内容,计算机也可以解析它。

PyYAML是 Python 的YAML解析器和发射器,这意味着它可以读写YAML。它会把任何 Python 对象写成YAML:列表、字典,甚至是类实例都包括在内。

10、Pyasn1

像上面的IDNA一样,这个项目也非常有用:

ASN.1 类型和 DER/BER/CER 编码(X.208)的纯 Python 实现

所幸这个已有数十年历史的标准有很多信息可用。ASN.1是 Abstract Syntax Notation One 的缩写,它就像是数据序列化的教父。它来自电信行业。也许你知道协议缓冲区或 Apache Thrift?这就是它们的 1984 年版本。

11、Docutils

Docutils是一个模块化系统,用来将纯文本文档处理为很多有用的格式,例如 HTML、XML 和 LaTeX 等。Docutils能读取reStructuredText格式的纯文本文档,这种格式是类似于 MarkDown 的易读标记语法。

12、Chardet

你可以用chardet模块来检测文件或数据流的字符集。比如说,需要分析大量随机文本时,这会很有用。但你也可以在处理远程下载的数据,但不知道用的是什么字符集时使用它。

13、RSA

rsa包是一个纯 Python 的 RSA 实现。它支持:

加密和解密

签名和验证签名

根据 PKCS#1 1.5 版生成密钥

它既可以用作 Python 库,也能在命令行中使用。

14、Jmespath

JMESPath,发音为“James path”,使 Python 中的 JSON 更容易使用。它允许你声明性地指定如何从 JSON 文档中提取元素。

15、Setuptools

它是用于创建 Python 包的工具。不过,其文档很糟糕。它没有清晰描述它的用途,并且文档中包含无效链接。最好的信息源是这个站点,特别是这个创建 Python 包的指南。

16、Pytz

像dateutils一样,这个库可帮助你处理日期和时间。有时候,时区处理起来可能很麻烦。幸好有这样的包,可以让事情变得简单些。

17、Futures

从 Python 3.2 开始,python 提供current.futures模块,可帮助你实现异步执行。futures 包是该库适用于 Python 2 的 backport。它不适用于 Python3 用户,因为 Python 3 原生提供了该模块。

18、Colorama

使用 Colorama,你可以为终端添加一些颜色:

更多Python知识请关注Python自学网


文章标题:python请求处理函数 python 函数 方法
新闻来源:http://kswjz.com/article/doodjei.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流