扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
二分法的基本思路是:任意两个点x1和x2,判断区间(x1,x2)内有无一个实根,如果f(x1)与f(x2)符号相反,则说明有一实根。接着取(x1,x2)的中点x,检查f(x)和f(x2)是否同号,如果不同号,说明实根在(x,x2)之间,如果同号,在比较(x1,x),这样就将范围缩小一半,然后按上述方法不断的递归调用,直到区间相当小(找出根为止)!
网页设计是网站建设的前奏,好的网页设计更深度的剖析产品和设计风格定位,结合最新的网页设计流行趋势,与WVI应用标准,设计出具企业表现力,大器而深稳的网站界面设。成都创新互联公司自2013年起,是成都网站建设公司:提供企业网站设计,成都品牌网站建设,营销型企业网站建设方案,成都响应式网站建设,微信小程序,专业建站公司做网站。
比如用二分法求f(x)=x^3-6x-1=0的实根。
代码如下(已调试):
#include "math.h"
main()
{
float x,x1,x2;
float F(float x,float x1,float x2);
printf("请输入区间[x1,x2]\n");
scanf("%f%f",x1,x2);
printf("x=%f\n",F(x,x1,x2));
}
float F(float x,float x1,float x2)
{
float f,f1,f2;
do
{
f1=pow(x1,3)-6*x1-1.0;
f2=pow(x2,3)-6*x2-1.0;
}while(f1*f20); //确保输入的x1,x2使得f1,f2符号相反
do
{
x=(x1+x2)/2; //求x1,x2的中点
f=pow(x,3)-6*x-1.0;
if(f1*f0) //当f与f1符号相同时
{x1=x;f1=f;}
else if(f2*f0) //当f与f2符号相同时
{x2=x;f2=f;}
}while(fabs(f)1e-6); //判断条件fabs(f)1e-6的意思是f的值非常0
return x;
}
输入:1 5
则输出:x=2.528918
输入:-10 10
则输出:x=2.528918
如果连续函数在给定区间不单调,很有可能中值*下界值和中值*上界值都大于0,那么会跳出认为没有根,而事实上很有可能这个中值点靠近函数极点。
而真正用二分法求给定区间的思路是:
首先为函数求导,算出导函数的零点,然后再判断零点性质,最后将函数区间分为单调递增和单调递减间隔的形式,对每一段进行二分法求根。
#include stdio.h
#include math.h
#define DEFAULT_UPPER (10)
#define DEFAULT_LOWER (-10)
#define DEFAULT_E (0.00000001)
#define _MID(x,y) ((x+y)/2)
#define _VALUE(x) (2*x*x*x-4*x*x+3*x-6)
double _e;
int getRoot(double lower, double upper, double *result);
main()
{
double root;
printf("Enter a deviation:");
scanf("%lf", _e);
if(_e == 0.0)
_e = DEFAULT_E;
if(getRoot(DEFAULT_LOWER, DEFAULT_UPPER, root))
printf("Root:%2.8lf\n", root);
else
printf("Root:No Solution.\n");
}
int getRoot(double lower, double upper, double *result)
{
*result = _MID(lower,upper);
if(upper - lower = _e)
return 1;
if(_VALUE(lower)*_VALUE(*result) = 0)
return getRoot(lower, *result, result);
else if(_VALUE(*result)*_VALUE(upper) = 0)
return getRoot(*result, upper, result);
else
return 0;
}
这段代码是求解方程f(x)=0在区间[-10,10]上的根的数值解。
方法的思想就是:一直选取区间中间的数值,如果发现中间的函数值与一侧函数值,异号,那么说明解在这个更小的区间中,采用eps=1e-5作为区间的极限大小,通过迭代的方法求解这个方程的数值解。
所以了解了上述思想,那么else if(f(a)*f(c)0) b=c; 说明的是 f(a)和f(c)异号,那么使用b=(a+b)/2缩小迭代区间,继续迭代;同理else a=c;说明f(a)和f(c)同号,那么使用a(a+b)/2缩小迭代区间,继续迭代!
#include "stdio.h"
#include "math.h"
float f(float x)
{
return x*x-6*x-1;
}
float point(float x1,float x2)
{
float s;
if(fabs(f((x1+x2)/2))=0.000001)//此处设精度
printf("%f\n",(x1+x2)/2);
else
{
if(f(x1)*f((x1+x2)/2)0)
point(x1,(x1+x2)/2);
if(f(x2)*f((x1+x2)/2)0)
point((x1+x2)/2,x2);
}
}
int main()
{
float x1,x2,t;
printf("输入区间[x1,x2]:");
scanf("%f %f",x1,x2);
//if(f(x1)==0) printf("%f\n",x1);
//if(f(x2)==0) printf("%f\n",x2);
if(f(x1)*f(x2)0 f(x1)*f((x1+x2)/2)0 f(x2)*f((x1+x2)/2)0)
{
printf("无解!");
}
else
point(x1,x2);
}
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流