扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
首先是要这个求解的问题,适合用递归方法来进行求解。找到这个递归解法结束递归的条件。递归函数中,首先第一个语句就是如果满足递归条件,就直接返回确定的值,否则返回使用递归方法求解的表达式。
在承德县等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站制作、成都网站制作 网站设计制作按需规划网站,公司网站建设,企业网站建设,成都品牌网站建设,成都营销网站建设,外贸网站建设,承德县网站建设费用合理。
递归函数有三点要求:
1,递归的终止点,即递归函数的出口
2,不断的递归调用自身
3,递归函数主体内容,即递归函数需要做的事情
ps:3一般可以放在2的前面或者后面,一般1放最前面。另外,2和3可以根据不同的需要合并,比如,有时候递归函数的主体就是返回调用下层函数所得到的结果。
具体例子如下:
void fun(int n)
{
if(n=0) return; //1 这是递归的终点,即出口
fun(n-1); //2、递归函数自身的调用
coutnendl; //3 递归函数的主体内容
}
2,3合并的情况
int fun(int n)
{
if(n=0) return 0;
return fun(n-1)+fun(n-2); //2 3合并
}
递归(recursion)就是子程序(或函数)直接调用自己或通过一系列调用语句间接调用自己,是一种描述问题和解决问题的基本方法。
递归通常用来解决结构自相似的问题。所谓结构自相似,是指构成原问题的子问题与原问题在结构上相似,可以用类似的方法解决。具体地,整个问题的解决,可以分为两部分:第一部分是一些特殊情况,有直接的解法;第二部分与原问题相似,但比原问题的规模小。实际上,递归是把一个不能或不好解决的大问题转化为一个或几个小问题,再把这些小问题进一步分解成更小的问题,直至每个小问题都可以直接解决。因此,递归有两个基本要素:
(1)边界条件:确定递归到何时终止,也称为递归出口。
(2)递归模式:大问题是如何分解为小问题的,也称为递归体。递归函数只有具备了这两个要素,才能在有限次计算后得出结果
汉诺塔问题:对汉诺塔问题的求解,可以通过以下3个步骤实现:
(1)将塔上的n-1个碟子借助塔C先移到塔B上;
(2)把塔A上剩下的一个碟子移到塔C上;
(3)将n-1个碟子从塔B借助塔A移到塔C上。
在递归函数中,调用函数和被调用函数是同一个函数,需要注意的是递归函数的调用层次,如果把调用递归函数的主函数称为第0层,进入函数后,首次递归调用自身称为第1层调用;从第i层递归调用自身称为第i+1层。反之,退出第i+1层调用应该返回第i层。采用图示方法描述递归函数的运行轨迹,从中可较直观地了解到各调用层次及其执行情况,具体方法如下:
(1)写出函数当前调用层执行的各语句,并用有向弧表示语句的执行次序;
(2)对函数的每个递归调用,写出对应的函数调用,从调用处画一条有向弧指向被调用函数入口,表示调用路线,从被调用函数末尾处画一条有向弧指向调用语句的下面,表示返回路线;
(3)在返回路线上标出本层调用所得的函数值。n=3时汉诺塔算法的运行轨迹如下图所示,有向弧上的数字表示递归调用和返回的执行顺序
三、递归函数的内部执行过程
一个递归函数的调用过程类似于多个函数的嵌套的调用,只不过调用函数和被调用函数是同一个函数。为了保证递归函数的正确执行,系统需设立一个工作栈。具体地说,递归调用的内部执行过程如下:
(1)运动开始时,首先为递归调用建立一个工作栈,其结构包括值参、局部变量和返回地址;
(2)每次执行递归调用之前,把递归函数的值参和局部变量的当前值以及调用后的返回地址压栈;
(3)每次递归调用结束后,将栈顶元素出栈,使相应的值参和局部变量恢复为调用前的值,然后转向返回地址指定的位置继续执行。
上述汉诺塔算法执行过程中,工作栈的变化如下图所示,其中栈元素的结构为(返回地址,n值,A值,B值,C值),返回地址对应算法中语句的行号,分图的序号对应图中递归调用和返回的序号
我可以帮助你,你先设置我最佳答案后,我百度Hii教你。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流