dynamicsgl的简单介绍-成都快上网建站

dynamicsgl的简单介绍

劳拉与光明守护者如何在苹果手机下载

通过搜索下载。

目前创新互联公司已为成百上千家的企业提供了网站建设、域名、网页空间、网站运营、企业网站设计、石阡网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。

打开苹果手机应用商店,搜索劳拉与光明守护者游戏名称,点击下载即可成功下载安装。

《劳拉与光之守护者》是一款动作冒险类游戏,由CrystalDynamics开发。GL讲述了一枚烟之镜的故事。

当研究的系统中有摩擦力时,在动力学普遍方程或拉格朗日方程中应怎样处 理

倒立摆系统是一种非线性、多变量和绝对不稳定系统,倒立摆系统的运动轨道可以是水平的, 还可以是倾斜的(这对实际机器人的步行稳定控制研究更有意义).对二级倒立摆系统的实时稳定 性进行研究是现代控制理论的一个挑战,而对倒立摆系统稳定性研究的实验则是控制理论的宝贵 经验.本文从两个角度对二级倒立摆的建模进行了研究,即从便于理解的运动合成角度和从便于 建模的Lagarange方程角度进行推导与比较,使具有基本力学知识的读者能对二级倒立摆系统的模 型有一个较好理解. 1 系统描述 实验中的二级倒立摆系统有以下部分组成:有 效长度为90 cm的光滑导轨,可以在导轨上来回移 动的小车,材料为铝的摆杆铰接在小车上,二级摆 杆以同样的方式与一级摆杆相连,它们的铰接方式 决定了它们在竖直平面运动,一级摆杆和二级摆杆 规格相同,有效长度为525 cm.小车的驱动系统由 一直流力矩伺服电机和同步带传动系统组成,小车 相对参考点(即导轨的中心位置)的相对位移由 电位器0测量传动带而得到,一级摆杆与竖直方向 的夹角由固定在一级摆杆和小车铰接处的电位器 1测量得到,二级摆杆与竖直方向的夹角由电位 器通过测量两个摆的角度差.目。而间接得到.直流 伺服电机产生驱动力F 使小车根据摆角的变化而 在导轨上运动,从而达到二级倒立摆系统的平衡. 二级倒立摆系统数学模型的建立及意义49 2 数学建模 ■级倒立摆系统数学模型的建立基于以下假设: 1)每一级摆杆都是刚体. 2)在实验过程中同步带长度保持不变. 3)驱动力与放大器输入成正比并无延迟的直接施加于小车 4)实验过程中的库仑摩擦、动摩擦等所有I孽擦力足够小,在建模过程中可忽略不计 2,1根据牛顿力学、刚体动力学列写二级倒立摆的数学模型 利用运动合成原理:绝对运动相对运动+牵连运动, 首先对系统进行运动学分析,由于将动坐标系建在摆杆1、 摆杆2的质心处便于理解,分析过程以此为基础.利用牛顿 力学对系统进行动力学分析,由此得出二级倒立摆数学模型. , 利用力学中的隔离法,将二级倒立摆系统分为小车、摆 杆1、摆杆2兰部分首先,对小车进行分析如图2所示, 将摆杆1对小车的作用力分解为竖直方向的分力和水平 方向的分力. 水平方向方程为:,一=mo2. 对摆杆1和摆杆2进行受力分析如图3、4所示. ● 摆杆】 / l \ ^. l/ - 一 Ⅲ-g 图3摆杆1的受力情况 图2小车受力分析 J 0 / 黼1 凡筐:/ F 图4摆杆2受力分析 利用牛顿第二定律和动量矩定理得一摆的运动学和动力学方程: 2一2=ml +ml,l萌cos0 L-m,l萌sin0 L m g一l+F2 = .,. .sin0l+m1fL~eos0l s_n )sin 。s 一(L. )COS 根据牛顿第二定律和动量矩定理得到二摆的运动学和动力学方程: 2=帕+m:L1O~cos0l+卅2厶/~2COSOz一卅2Ll sin0 一卅2 受sin m2g-Fz =m2L sin0l+m2L0~sin0:十m L P~eos0l+m2 cos02 : l12 sin02一L,cos02 d t 。 2.2拉格朗日方程 为了得到二级倒立摆系统的动态方程应用拉格朗日方程,首先可写出 L=T- =÷,卉+÷上+ 。+{m.{[音( + in )] +[击( 。s ] )+{ :( 击( +Lt sin口+ sin )] +[告(£1COS +]2 COS )r)一m.gl c。s ] )一m2g(L,COS +t2 COS )拉格朗日方程的表达式为一等: _l_2⋯ 面一一“ J一’ ⋯为自由度数,亦即广义坐标数.对二级倒立摆系统有s=3, 即: , 日,由于在实验中口和的值很小,所以在建模化简过程中用到以下近似:≈ ≈0; 一≈0; COS( 一)≈1; sin( 一)≈ 一; COS ≈COS ≈1:sin ≈ : sin则线性化后整理得到方程组如下( 。+m + :) +( .,.+m2L.)萌+ : 反=F (1)( .t.+m ) +( + . +m )萌+m L.厶蘸=( ,.+ :L )gO: 量+ :L. 萌+( +m 厝) 叫赢g12(2)(3)其中各变量意义如下:o 为小车质量; 为摆杆1质量;m 为摆杆2质量;厶为摆杆的长度:F为小车驱动力; 为小车相对中心位置的位移; 为摆杆1与竖直方向的夹角; 为摆杆2与竖直方向夹角:,.为摆杆1质心到铰接点处距离: 为摆杆2质心到铰接点处距离.本买验中, o=2.328 7kg, -=0.22 kg, :=0.16 kg,L =0.5m,, =0.32m,t2=0.26m. 由于二级倒立摆系统的运动是绝对不稳定的鞍点运动,由数学模型和实验结果可知,状态反馈控制中的极配置应满足鞍点特性,可使二级倒立摆永立不倒.3 应用在稳定性控制问题上,倒立摆既具有普遍性又具有典型性.倒摆系统作为一种控制装置,它结构简单、价格低廉,便于模拟和数字实现多种不同的控制方法,作为一个被控对象,它是一个高阶次、不稳定、多变量、非线性、强耦合的快速系统,只有采用行之有效的控制策略,才能使其稳定.倒立摆系统可以用多种理论和方法来实现其稳定控制,如PID、自适应、状态反馈、智能控制、模糊控制及人工神经元网络等,都能在倒立摆系统控制上得到实现,而且当一种新的控制理论和方法提出以后,在不能用理论加以严格证明时,可以考虑通过倒立摆装置来验证其正确性和实用性.倒摆系统在控制系统研究中受到普遍重视.“倒立摆系统”已被公认为自动控制理论中的典型试验设备,也是控制理论在教学和科研中不可多得的典型物理模型.通过对倒立摆系统的研究,二级倒立摆系统数学模型的建立及意义51不仅可以解决控制中的理论问题,还能将控制理论所涉及的3个基础学科:力学、数学和电学(含计算机)有机的结合起来,在倒摆系统中进行综合应用.近代机械控制系统中,如直升飞机,火箭发射,人造卫星运行及机器人举重物、做体操和行走机器人步行控制等等,都存在有类似于倒立摆的稳定控制问题.在6O年代后期,作为一个典型的不稳定严重非线性系统的例证,倒立摆系统的概念被提了出来,人们习惯于用它来检验控制方法对不稳定、非线性和快速系统的控制处理能力.在实际教学中,作为验证控制策略的一种手段,倒立摆系统被提了出来.由于计算机仿真结果与实际实验总是存在很大的差别,二级倒立摆系统的研制为学生提供了理论与实践结合的可能.4 结论二级倒立摆系统是一个异常复杂而又对准确性、快速性要求很高的非线性不稳定控制问题.显然一个典型的非线性、不稳定系统的研究成果无论在理论上或是在方法论上都有重要的意义.而二级例立摆数学模型的建立对研究其稳定性具有指导作用.实验证明在此建模基础上采用状态反馈法对二级倒立摆系统的稳定控制相当成功,并可在此基础}=对其进行分析,为计算机控制提供 理论与实践的依据. 给分吧!!!!!

理论力学动力学问题

选B

正负号的选取有两种方法:

1 简单情况,可以很容易判断力矩是阻碍还是促进转动,促进为正,阻碍为负,比如本题显然弹力和重力都阻碍小球摆的偏转,于是:

-L/2φk*L/2*2-mg tanφ *L = P/gL^2d^2φ/dt^2,化简可得B

2 复杂情况,建立坐标系,准确写出力和位移的矢量形式,利用右手螺旋系,根据力学量定义严格写出方程。如本题,以纸面为xy坐标系,向左向上为正,则

弹力F=(-L/2φk,0),重力P=(0,-P),杆的矢量为L=(0,-L),旋转角度逆时针方向为正,

根据力矩公式M=r x F 可以列出方程

这种方法是复杂的,适合于进行数学分析。

微软的 Dynamics AX 、NAV 、GL 、CRM 分别代表什么意思。

这些都是微软的工具软件产品名,

AX是为中等大小和更大的组织帮助人员有效工作,管理更改和全局竞争的企业资源计划 (ERP) 解决方法。GL是其中一个模块。

Dynamics NAV 是为中小型公司和大型国际集团的当地子公司提供企业资源规划 (ERP) 应用的。现在是Microsoft Dynamics智能商务应用程序套件的一部分。

CRM的话就是字面意思,Customer Relationships Management,就是客户关系管理软件。微软的可以和很多好用的功能集成。

光知道意思,还不如直接去用用看,优文途新的官网上全部都可以免费试用的,百度一搜就有。


文章名称:dynamicsgl的简单介绍
网页URL:http://kswjz.com/article/doepdgc.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流