学习Python包并实现基本的爬虫过程-创新互联-成都快上网建站

学习Python包并实现基本的爬虫过程-创新互联

创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!

企业建站必须是能够以充分展现企业形象为主要目的,是企业文化与产品对外扩展宣传的重要窗口,一个合格的网站不仅仅能为公司带来巨大的互联网上的收集和信息发布平台,成都创新互联面向各种领域:成都航空箱成都网站设计成都营销网站建设解决方案、网站设计等建站排名服务。

这篇文章主要介绍了学习Python包并实现基本的爬虫过程,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获。下面让小编带着大家一起了解一下。

爬虫是入门Python最好的方式,没有之一。 Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。

掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。

对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有的人则认为先要掌握网页的知识,遂 开始 HTMLCSS,结果入了前端的坑 ,瘁……

但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从 一开始就要有一个具体的目标。

在目标的驱动下,你的学习才会更加精准和高效。 那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。 这里给你一条平滑的、零基础快速入门的学习路径。

学习 Python 包并实现基本的爬虫过程

大部分爬虫都是按 “发送请求——获得页面——解析页面——抽取并储存内容” 这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。

Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等, 建议从requests+Xpath 开始 ,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。

如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多, 一般的静态网站根本不在话下,豆瓣、糗事百科、腾讯新闻等基本上都可以上手了 。

掌握各种技巧,应对特殊网站的反爬措施

当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。

遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如 访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等 。

往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了。

学习 scrapy,搭建工程化的爬虫

掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。

scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。

学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。

学习数据库基础,应对大规模数据存储

爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。

MongoDB 可以方便你去存储一些非结构化的数据 ,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。

因为这里要用到的数据库知识其实非常简单,主要是 数据如何入库、如何进行提取 ,在需要的时候再学习就行。

分布式爬虫,实现大规模并发采集

爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字: 分布式爬虫 。

分布式这个东西,听起来很恐怖, 但其实就是利用多线程的原理让多个爬虫同时工作 ,需要你掌握 Scrapy + MongoDB + Redis 这三种工具 。

Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。

所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。

你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好 。

在这里有一套非常系统的爬虫课程,除了为你提供一条清晰的学习路径,我们甄选了 最实用的学习资源 以及 庞大的主流爬虫案例库 。短时间的学习,你就能够很好地掌握 Python 爬虫,获取你想得到的数据,同时具备数据分析、机器学习的Python基础。

《Python爬虫:入门+进阶》大纲

第一章:Python 爬虫入门

1、什么是爬虫

网址构成和翻页机制

网页源码结构及网页请求过程

爬虫的应用及基本原理

2、初识Python爬虫

Python爬虫环境搭建

创建第一个爬虫:爬取百度首页

爬虫三步骤:获取数据、解析数据、保存数据

3、使用Requests爬取豆瓣短评

Requests的安装和基本用法

用Requests爬取豆瓣短评信息

一定要知道的爬虫协议

4、使用Xpath解析豆瓣短评

解析神器Xpath的安装及介绍

Xpath的使用:浏览器复制和手写

实战:用Xpath解析豆瓣短评信息

5、使用pandas保存豆瓣短评数据

pandas的基本用法介绍

pandas文件保存、数据处理

实战:使用pandas保存豆瓣短评数据

6、浏览器抓包及headers设置(案例一:爬取知乎)

爬虫的一般思路:抓取、解析、存储

浏览器抓包获取Ajax加载的数据

设置headers突破反爬虫限制

实战:爬取知乎用户数据

7、数据入库之MongoDB(案例二:爬取拉勾)

MongoDB及RoboMongo的安装和使用

设置等待时间和修改信息头

实战:爬取拉勾职位数据

将数据存储在MongoDB中

补充实战:爬取微博移动端数据

8、Selenium爬取动态网页(案例三:爬取淘宝)

动态网页爬取神器Selenium搭建与使用

分析淘宝商品页面动态信息

实战:用Selenium爬取淘宝网页信息

第二章:Python爬虫之Scrapy框架

1、爬虫工程化及Scrapy框架初窥

html、css、js、数据库、http协议、前后台联动

爬虫进阶的工作流程

Scrapy组件:引擎、调度器、下载中间件、项目管道等

常用的爬虫工具:各种数据库、抓包工具等

2、Scrapy安装及基本使用

Scrapy安装

Scrapy的基本方法和属性

开始第一个Scrapy项目

3、Scrapy选择器的用法

常用选择器:css、xpath、re、pyquery

css的使用方法

xpath的使用方法

re的使用方法

pyquery的使用方法

4、Scrapy的项目管道

Item Pipeline的介绍和作用

Item Pipeline的主要函数

实战举例:将数据写入文件

实战举例:在管道里过滤数据

5、Scrapy的中间件

下载中间件和蜘蛛中间件

下载中间件的三大函数

系统默认提供的中间件

6、Scrapy的Request和Response详解

Request对象基础参数和高级参数

Request对象方法

Response对象参数和方法

Response对象方法的综合利用详解

第三章:Python爬虫进阶操作

1、网络进阶之谷歌浏览器抓包分析

http请求详细分析

网络面板结构

过滤请求的关键字方法

复制、保存和清除网络信息

查看资源发起者和依赖关系

2、数据入库之去重与数据库

数据去重

数据入库MongoDB

第四章:分布式爬虫及实训项目

1、大规模并发采集——分布式爬虫的编写

分布式爬虫介绍

Scrapy分布式爬取原理

Scrapy-Redis的使用

Scrapy分布式部署详解

如果你在学习Python的过程当中有遇见任何问题,可以加入我的python交流学习qq群:250933691,多多交流问题,互帮互助,群里有不错的学习教程和开发工具。学习python有任何问题(学习方法,学习效率,如何就业),可以随时来咨询我

2、实训项目(一)——58同城二手房监控

3、实训项目(二)——去哪儿网模拟登陆

4、实训项目(三)——京东商品数据抓取

感谢你能够认真阅读完这篇文章,希望小编分享学习Python包并实现基本的爬虫过程内容对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联-成都网站建设公司行业资讯频道,遇到问题就找创新互联,详细的解决方法等着你来学习!


名称栏目:学习Python包并实现基本的爬虫过程-创新互联
当前地址:http://kswjz.com/article/dgidoe.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流