扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章将为大家详细讲解有关Python如何实现隐马尔可夫模型的前向后向算法,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
创新互联是一家以重庆网站建设、网页设计、品牌设计、软件运维、seo优化、小程序App开发等移动开发为一体互联网公司。已累计为不锈钢雕塑等众行业中小客户提供优质的互联网建站和软件开发服务。前向算法Python实现循环方式
import numpy as np def hmm_forward(Q, V, A, B, pi, T, O, p): """ :param Q: 状态集合 :param V: 观测集合 :param A: 状态转移概率矩阵 :param B: 观测概率矩阵 :param pi: 初始概率分布 :param T: 观测序列和状态序列的长度 :param O: 观测序列 :param p: 存储各个状态的前向概率的列表,初始为空 """ for t in range(T): # 计算初值 if t == 0: for i in range(len(Q)): p.append(pi[i] * B[i, V[O[0]]]) # 初值计算完毕后,进行下一时刻的递推运算 else: alpha_t_ = 0 alpha_t_t = [] for i in range(len(Q)): for j in range(len(Q)): alpha_t_ += p[j] * A[j, i] alpha_t_t.append(alpha_t_ * B[i, V[O[t]]]) alpha_t_ = 0 p = alpha_t_t return sum(p) # 《统计学习方法》书上例10.2 Q = [1, 2, 3] V = {'红':0, '白':1} A = np.array([[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]]) B = np.array([[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]]) pi = [0.2, 0.4, 0.4] T = 3 O = ['红', '白', '红'] p = [] print(hmm_forward(Q, V, A, B, pi, T, O, p)) # 0.130218
递归方式
import numpy as np def hmm_forward_(Q, V, A, B, pi, T, O, p, T_final): """ :param T_final:递归的终止条件 """ if T == 0: for i in range(len(Q)): p.append(pi[i] * B[i, V[O[0]]]) else: alpha_t_ = 0 alpha_t_t = [] for i in range(len(Q)): for j in range(len(Q)): alpha_t_ += p[j] * A[j, i] alpha_t_t.append(alpha_t_ * B[i, V[O[T]]]) alpha_t_ = 0 p = alpha_t_t if T >= T_final: return sum(p) return hmm_forward_(Q, V, A, B, pi, T+1, O, p, T_final) Q = [1, 2, 3] V = {'红':0, '白':1} A = np.array([[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]]) B = np.array([[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]]) pi = [0.2, 0.4, 0.4] T = 0 O = ['红', '白', '红'] p = [] T_final = 2 # T的长度是3,T的取值是(0时刻, 1时刻, 2时刻) print(hmm_forward_(Q, V, A, B, pi, T, O, p, T_final))后向算法Python实现
循环方式
import numpy as np def hmm_backward(Q, V, A, B, pi, T, O, beta_t, T_final): for t in range(T, -1, -1): if t == T_final: beta_t = beta_t else: beta_t_ = 0 beta_t_t = [] for i in range(len(Q)): for j in range(len(Q)): beta_t_ += A[i, j] * B[j, V[O[t + 1]]] * beta_t[j] beta_t_t.append(beta_t_) beta_t_ = 0 beta_t = beta_t_t if t == 0: p=[] for i in range(len(Q)): p.append(pi[i] * B[i, V[O[0]]] * beta_t[i]) beta_t = p return sum(beta_t) # 《统计学习方法》课后题10.1 Q = [1, 2, 3] V = {'红':0, '白':1} A = np.array([[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]]) B = np.array([[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]]) pi = [0.2, 0.4, 0.4] T = 3 O = ['红', '白', '红', '白'] beta_t = [1, 1, 1] T_final = 3 print(hmm_backward_(Q, V, A, B, pi, T, O, beta_t, T_final)) # 0.06009
递归方式
import numpy as np def hmm_backward(Q, V, A, B, pi, T, O, beta_t, T_final): if T == T_final: beta_t = beta_t else: beta_t_ = 0 beta_t_t = [] for i in range(len(Q)): for j in range(len(Q)): beta_t_ += A[i, j] * B[j, V[O[T+1]]] * beta_t[j] beta_t_t.append(beta_t_) beta_t_ = 0 beta_t = beta_t_t if T == 0: p=[] for i in range(len(Q)): p.append(pi[i] * B[i, V[O[0]]] * beta_t[i]) beta_t = p return sum(beta_t) return hmm_backward(Q, V, A, B, pi, T-1, O, beta_t, T_final) jpgQ = [1, 2, 3] V = {'红':0, '白':1} A = np.array([[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]]) B = np.array([[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]]) pi = [0.2, 0.4, 0.4] T = 3 O = ['红', '白', '红', '白'] beta_t = [1, 1, 1] T_final = 3 print(hmm_backward_(Q, V, A, B, pi, T, O, beta_t, T_final)) # 0.06009
关于“Python如何实现隐马尔可夫模型的前向后向算法”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流