扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章给大家介绍基于 Agent的Python是怎么实现隔离仿真,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
目前创新互联建站已为上千余家的企业提供了网站建设、域名、网络空间、网站托管运营、企业网站设计、长子网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。我会向你介绍用基于 Agent 的模型理解复杂现象的威力。为此,我们会用到一些 Python,社会学的案例分析和 Schelling 模型。
如果你观察多民族(multi-ethnic)混居城市的种族(racial)分布,你会对不可思议的种族隔离感到惊讶。举个例子,下面是美国人口普查局(US Census)用种族和颜色对应标记的纽约市地图。种族隔离清晰可见。
许多人会从这个现象中认定人是偏隘的(intolerant),不愿与其它种族比邻而居。然而进一步看,会发现细微的差别。2005 年的诺贝尔经济学奖得主托马斯·谢林(Thomas Schelling)在上世纪七十年代,就对这方面非常感兴趣,并建立了一个基于 Agent 的模型——“Schelling 隔离模型”的来解释这种现象。借助这个极其简单的模型,Schelling 会告诉我们,宏观所见并非微观所为(What’s going down)。
我们会借助 Schelling 模型模拟一些仿真来深刻理解隔离现象。
基于 Agent 的模型需要三个参数:1)Agents,2)行为(规则)和 3)总体层面(aggregate level)的评估。在 Schelling 模型中,Agents 是市民,行为则是基于相似比(similarity ratio )的搬迁,而总体评估评估就是相似比。
假设城市有 n 个种族。我们用唯一的颜色来标识他们,并用网格来代表城市,每个单元格则是一间房。要么是空房子,要么有居民,且数量为 1。如果房子是空的,我们用白色标识。如果有居民,我们用此人的种群颜色来标识。我们把每个人周边房屋(上下左右、左上右上、左下右下)定义为邻居。
Schelling 的目的是想测试当居民更倾向于选择同种族的邻居(甚至多种族)时会如果发生什么。如果同种族邻居的比例上升到确定阈值(称之为相似性阈值(Similarity Threshold)),那么我们认为这个人已经满意(satisfied)了。如果还没有,就是不满意。
Schelling 的仿真如下。首先我们将人随机分配到城里并留空一些房子。对于每个居民,我们都会检查他(她)是否满意。如果满意,我们什么也不做。但如果不满意,我们把他分配到空房子。仿真经过几次迭代后,我们会观察最终的种族分布。
早在上世纪 70 年代,Schelling 就用铅笔和硬币在纸上完成了他的仿真。我们现在则用 Python 来完成相同的仿真。
为了模拟仿真,我们首先导入一些必要的库。除了 Matplotlib 以外,其它库都是 Python 默认安装的。
Python
import matplotlib.pyplot as plt import itertools import random import copy
|
接下来,定义名为 Schelling 的类,涉及到 6 个参数:城市的宽和高,空房子的比例,相似性阈值,迭代数和种族数。我们在这个类中定义了 4 个方法:populate,is_unsatisfied,update,move_to_empty, 还有 plot)。
Python
class Schelling: def __init__(self, width, height, empty_ratio, similarity_threshold, n_iterations, races = 2): self.width = width self.height = height self.races = races self.empty_ratio = empty_ratio self.similarity_threshold = similarity_threshold self.n_iterations = n_iterations self.empty_houses = [] self.agents = {}
def populate(self): ....
def is_unsatisfied(self, x, y): ....
def update(self): ....
def move_to_empty(self, x, y): ....
def plot(self): ....
|
poplate 方法被用在仿真的开头,这个方法将居民随机分配在网格上。
Python
def populate(self): self.all_houses = list(itertools.product(range(self.width),range(self.height))) random.shuffle(self.all_houses)
self.n_empty = int( self.empty_ratio * len(self.all_houses) ) self.empty_houses = self.all_houses[:self.n_empty]
self.remaining_houses = self.all_houses[self.n_empty:] houses_by_race = [self.remaining_houses[i::self.races] for i in range(self.races)] for i in range(self.races): # 为每个种族创建 agent self.agents = dict( self.agents.items() + dict(zip(houses_by_race[i], [i+1]*len(houses_by_race[i]))).items()
|
is_unsatisfied 方法把房屋的 (x, y) 坐标作为传入参数,查看同种群邻居的比例,如果比理想阈值(happiness threshold)高则返回 True,否则返回 False。
Python
def is_unsatisfied(self, x, y):
race = self.agents[(x,y)] count_similar = 0 count_different = 0
if x > 0 and y > 0 and (x-1, y-1) not in self.empty_houses: if self.agents[(x-1, y-1)] == race: count_similar += 1 else: count_different += 1 if y > 0 and (x,y-1) not in self.empty_houses: if self.agents[(x,y-1)] == race: count_similar += 1 else: count_different += 1 if x < (self.width-1) and y > 0 and (x+1,y-1) not in self.empty_houses: if self.agents[(x+1,y-1)] == race: count_similar += 1 else: count_different += 1 if x > 0 and (x-1,y) not in self.empty_houses: if self.agents[(x-1,y)] == race: count_similar += 1 else: count_different += 1 if x < (self.width-1) and (x+1,y) not in self.empty_houses: if self.agents[(x+1,y)] == race: count_similar += 1 else: count_different += 1 if x > 0 and y < (self.height-1) and (x-1,y+1) not in self.empty_houses: if self.agents[(x-1,y+1)] == race: count_similar += 1 else: count_different += 1 if x > 0 and y < (self.height-1) and (x,y+1) not in self.empty_houses: if self.agents[(x,y+1)] == race: count_similar += 1 else: count_different += 1 if x < (self.width-1) and y < (self.height-1) and (x+1,y+1) not in self.empty_houses: if self.agents[(x+1,y+1)] == race: count_similar += 1 else: count_different += 1
if (count_similar+count_different) == 0: return False else: return float(count_similar)/(count_similar+count_different) < self.happy_threshold
|
update 方法将查看网格上的居民是否尚未满意,如果尚未满意,将随机把此人分配到空房子中。并模拟 n_iterations 次。
Python
def update(self): for i in range(self.n_iterations): self.old_agents = copy.deepcopy(self.agents) n_changes = 0 for agent in self.old_agents: if self.is_unhappy(agent[0], agent[1]): agent_race = self.agents[agent] empty_house = random.choice(self.empty_houses) self.agents[empty_house] = agent_race del self.agents[agent] self.empty_houses.remove(empty_house) self.empty_houses.append(agent) n_changes += 1 print n_changes if n_changes == 0: break
|
move_to_empty 方法把房子坐标(x, y)作为传入参数,并将 (x, y) 房间内的居民迁入空房子。这个方法被 update 方法调用,会把尚不满意的人迁入空房子。
Python
def move_to_empty(self, x, y): race = self.agents[(x,y)] empty_house = random.choice(self.empty_houses) self.updated_agents[empty_house] = race del self.updated_agents[(x, y)] self.empty_houses.remove(empty_house) self.empty_houses.append((x, y))
|
plot 方法用来绘制整个城市和居民。我们随时可以调用这个方法来了解城市的居民分布。这个方法有两个传入参数:title 和 file_name。
Python
def plot(self, title, file_name): fig, ax = plt.subplots() # 如果要进行超过 7 种颜色的仿真,你应该相应地进行设置 agent_colors = {1:'b', 2:'r', 3:'g', 4:'c', 5:'m', 6:'y', 7:'k'} for agent in self.agents: ax.scatter(agent[0]+0.5, agent[1]+0.5, color=agent_colors[self.agents[agent]])
ax.set_title(title, fontsize=10, fontweight='bold') ax.set_xlim([0, self.width]) ax.set_ylim([0, self.height]) ax.set_xticks([]) ax.set_yticks([]) plt.savefig(file_name)
|
现在我们实现了 Schelling 类,可以模拟仿真并绘制结果。我们会按照下面的需求(characteristics)进行三次仿真:
宽 = 50,而高 = 50(包含 2500 间房子)
30% 的空房子
相似性阈值 = 30%(针对仿真 1),相似性阈值 = 50%(针对仿真 2),相似性阈值 = 80%(针对仿真 3)
大迭代数 = 500
种族数量 = 2
创建并“填充”城市。
Python
schelling_1 = Schelling(50, 50, 0.3, 0.3, 500, 2) schelling_1.populate()
schelling_2 = Schelling(50, 50, 0.3, 0.5, 500, 2) schelling_2.populate()
schelling_3 = Schelling(50, 50, 0.3, 0.8, 500, 2) schelling_3.populate()
|
接下来,我们绘制初始阶段的城市。注意,相似性阈值在城市的初始状态不起作用。
Python
schelling_1_1.plot('Schelling Model with 2 colors: Initial State', 'schelling_2_initial.png')
|
下面我们运行 update 方法,绘制每个相似性阈值的最终分布。
Python
schelling_1.update() schelling_2.update() schelling_3.update()
schelling_1.plot('Schelling Model with 2 colors: Final State with Similarity Threshold 30%', 'schelling_2_30_final.png') schelling_2.plot('Schelling Model with 2 colors: Final State with Similarity Threshold 50%', 'schelling_2_50_final.png') schelling_3.plot('Schelling Model with 2 colors: Final State with Similarity Threshold 80%', 'schelling_2_80_final.png')
|
我们发现相似性阈值越高,城市的隔离度就越高。此外,我们还会发现即便相似性阈值很小,城市依旧会产生隔离。换言之,即使居民非常包容(tolerant)(相当于相似性阈值很小),还是会以隔离告终。我们可以总结出:宏观所见并非微观所为。
以上仿真,我们只通过可视化来确认隔离发生。然而,我们却没有对隔离的计算进行定量评估。本节我们会定义这个评估标准,我们也会模拟一些仿真来确定理想阈值和隔离程度的关系。
首先在 Schelling 类中添加 calculate_similarity 方法。这个方法会计算每个 Agent 的相似性并得出均值。我们会用平均相似比评估隔离程度。
Python
def calculate_similarity(self): similarity = [] for agent in self.agents: count_similar = 0 count_different = 0 x = agent[0] y = agent[1] race = self.agents[(x,y)] if x > 0 and y > 0 and (x-1, y-1) not in self.empty_houses: if self.agents[(x-1, y-1)] == race: count_similar += 1 else: count_different += 1 if y > 0 and (x,y-1) not in self.empty_houses: if self.agents[(x,y-1)] == race: count_similar += 1 else: count_different += 1 if x < (self.width-1) and y > 0 and (x+1,y-1) not in self.empty_houses: if self.agents[(x+1,y-1)] == race: count_similar += 1 else: count_different += 1 if x > 0 and (x-1,y) not in self.empty_houses: if self.agents[(x-1,y)] == race: count_similar += 1 else: count_different += 1 if x < (self.width-1) and (x+1,y) not in self.empty_houses: if self.agents[(x+1,y)] == race: count_similar += 1 else: count_different += 1 if x > 0 and y < (self.height-1) and (x-1,y+1) not in self.empty_houses: if self.agents[(x-1,y+1)] == race: count_similar += 1 else: count_different += 1 if x > 0 and y < (self.height-1) and (x,y+1) not in self.empty_houses: if self.agents[(x,y+1)] == race: count_similar += 1 else: count_different += 1 if x < (self.width-1) and y < (self.height-1) and (x+1,y+1) not in self.empty_houses: if self.agents[(x+1,y+1)] == race: count_similar += 1 else: count_different += 1 try: similarity.append(float(count_similar)/(count_similar+count_different)) except: similarity.append(1) return sum(similarity)/len(similarity)
|
接下去,我们算出每个相似性阈值的平均相似比,并绘制出相似性阈值和相似比之间的关系。
Python
similarity_threshold_ratio = {} for i in [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]: schelling = Schelling(50, 50, 0.3, i, 500, 2) schelling.populate() schelling.update() similarity_threshold_ratio[i] = schelling.calculate_similarity()
fig, ax = plt.subplots() plt.plot(similarity_threshold_ratio.keys(), similarity_threshold_ratio.values(), 'ro') ax.set_title('Similarity Threshold vs. Mean Similarity Ratio', fontsize=15, fontweight='bold') ax.set_xlim([0, 1]) ax.set_ylim([0, 1.1]) ax.set_xlabel("Similarity Threshold") ax.set_ylabel("Mean Similarity Ratio") plt.savefig('schelling_segregation_measure.png')
|
关于基于 Agent的Python是怎么实现隔离仿真就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流