Python基于pyCUDA实现GPU加速并行计算功能入门教程-创新互联-成都快上网建站

Python基于pyCUDA实现GPU加速并行计算功能入门教程-创新互联

本文实例讲述了Python基于pyCUDA实现GPU加速并行计算功能。分享给大家供大家参考,具体如下:

创新互联建站主要从事成都网站制作、网站设计、网页设计、企业做网站、公司建网站等业务。立足成都服务华龙,十多年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:028-86922220

Nvidia的CUDA 架构为我们提供了一种便捷的方式来直接操纵GPU 并进行编程,但是基于 C语言的CUDA实现较为复杂,开发周期较长。而python 作为一门广泛使用的语言,具有 简单易学、语法简单、开发迅速等优点。作为第四种CUDA支持语言,相信python一定会 在高性能计算上有杰出的贡献–pyCUDA。

Python基于pyCUDA实现GPU加速并行计算功能入门教程

pyCUDA特点

  • CUDA完全的python实现
  • 编码更为灵活、迅速、自适应调节代码
  • 更好的鲁棒性,自动管理目标生命周期和错误检测
  • 包含易用的工具包,包括基于GPU的线性代数库、reduction和scan,添加了快速傅里叶变换包和线性代数包LAPACK
  • 完整的帮助文档Wiki

pyCUDA的工作流程

具体的调用流程如下:

Python基于pyCUDA实现GPU加速并行计算功能入门教程

调用基本例子

import pycuda.autoinit
import pycuda.driver as drv
import numpy
from pycuda.compiler import SourceModule
mod = SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
 const int i = threadIdx.x;
 dest[i] = a[i] * b[i];
}
""")
multiply_them = mod.get_function("multiply_them")
a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)
dest = numpy.zeros_like(a)
multiply_them(
  drv.Out(dest), drv.In(a), drv.In(b),
  block=(400,1,1), grid=(1,1))
print dest-a*b
#tips: copy from hello_gpu.py in the package.

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


分享标题:Python基于pyCUDA实现GPU加速并行计算功能入门教程-创新互联
分享路径:http://kswjz.com/article/cooeed.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流